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Abstract. We propose a sophisticated framework for high-energy hadronic collisions, wherein different
QCD physics processes are interleaved in a common sequence of falling transverse-momentum values.
Thereby phase-space competition is introduced between multiple parton–parton interactions and initial-
state radiation. As a first step we develop new transverse-momentum-ordered showers for initial- and
final-state radiation, which should be of use also beyond the scope of the current article. These showers
are then applied in the context of multiple interactions, and a few tests of the new model are presented.
The article concludes with an outlook on further aspects, such as the possibility of a shower branching
giving partons participating in two different interactions.

1 Introduction

High-energy hadronic collisions offer a busy environment.
The incoming hadrons seethe with activity as partons con-
tinuously branch and recombine. At the moment of colli-
sion, several partons from the two incoming hadrons may
undergo interactions, that scatter the partons in different
directions. The scattered partons may radiate, and all out-
going partons, including the beam remnants, hadronize
in a correlated fashion to produce the observable high-
multiplicity events. The physics involves a subtle blend of
many perturbative and nonperturbative phenomena. No
wonder that there is no simple, standard description to
be offered!

What often saves the day is that most of the above ac-
tivity is soft, i.e. confined to small transverse momenta p⊥.
When the processes of interest occur at large momentum
transfers they, therefore, stand out, by producing jets, lep-
tons or photons at large p⊥. To first approximation, the rest
of the activity, which we refer to as the underlying event,
may then be disregarded. For precision studies, however,
the problem remains: minijets from the underlying event
may e.g. affect the jet energy calibration and the lepton and
photon isolation criteria. Quite apart from the interesting
challenge of better understanding the complex (semi-)soft
processes for their own sake, this motivates an effort to in-
vestigate and model as well as possible the underlying event
physics (when a selective trigger is used) and minimum-bias
physics (for the inclusive sample of multihadronic events).

The basic building blocks needed to describe hadron–
hadron collisions include hard-scattering matrix elements,
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parton density functions, initial- and final-state parton
showers, and a hadronization scheme. Each of these de-
serve study in its own right, but additionally there is the
question of how they should be combined. It is this lat-
ter aspect that we take aim at here. More specifically,
we concentrate on the non-trivial interplay between mul-
tiple parton–parton interactions and initial-state parton
showers, extending previous models for multiple interac-
tions and developing new models for p⊥-ordered initial-
and final-state parton showers in the process.

A good starting point for the discussion is offered by
Fig. 1. Based on the composite nature of hadrons, we have
here depicted multiple interactions (MI) between several
pairs of incoming partons, see [1] for a minireview. The
structure of an incoming hadron is illustrated, with the p⊥
evolution of some partons from a nonperturbative border
at p⊥min up to the different perturbative interactions. The
p2

⊥ = t̂û/ŝ scale is a convenient measure of hardness, since
the t (and u) channel gluon exchange processes qq′ → qq′,
qg → qg and gg → gg dominate the cross section. One has
to imagine a corresponding picture for the other hadron –
omitted for clarity – with the two incoming sides joined at
the interactions.

The next immediate issue that arises is how to describe
hadronic objects under such conditions. In general, cross
section calculations rely on parton density functions to de-
scribe the initial state. For the joint cross section of several
simultaneous interactions one thus needs multi-parton den-
sities, categorized by flavour content and fully differential
in all x and Q2 ≈ p2

⊥ values. Obviously such densities are
almost entirely unconstrained, with neither data nor first-
principles theory giving more than the roughest guidelines.
To develop a realistic approximate framework, it is natu-
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Fig. 1. Schematic figure illustrating one
incoming hadron in an event with a hard
interaction occurring at p⊥1 and three
further interactions at successively lower
p⊥ scales, each associated with (the po-
tentiality of) initial-state radiation, and
further with the possibility of two inter-
acting partons (2 and 3 here) having a
common ancestor in the parton showers.
Full lines represent quarks and spirals glu-
ons. The vertical p⊥ scale is chosen for
clarity rather than realism; most of the
activity is concentrated to small p⊥ val-
ues

ral to consider first the hardest interaction, which after all
should be the most important one in terms of experimental
consequences. Moreover, self-consistency ensures that this
is also the interaction for which the standard ‘one-parton-
inclusive’ pdf’s should be applicable; when averaging over
all configurations of softer partons, the standard QCD phe-
nomenology should be obtained for the ones participating
in the hardest interaction, this being the way the stan-
dard parton densities have been measured. Thus it makes
sense to order and study the interactions in a sequence of
falling ‘hardness’, for which we shall here take p⊥ as our
measure, i.e. we consider the interactions in a sequence
p⊥1 > p⊥2 > p⊥3 > p⊥4. The normal parton densities can
then be used for the scattering at p⊥1, and correlation ef-
fects, known or estimated, can be introduced in the choice
of ‘subsequent’ lower-p⊥ scatterings.

In [1] we developed a new and sophisticated model
to take into account such correlations in momentum and
flavour. In particular, while the cross section normalisa-
tion included the full contributions from both quarks and
gluons in the initial state, in the earlier model described
in [2] subsequent interactions technically had to be treated
as occurring between incoming gluons only, and the colour
flow was determined according to a crude (though sur-
prisingly successful) simplified model. Going further, the
new model allows for more than one valence quark to be
kicked out, and also takes into account the fact that sea

quarks come in pairs. The beam remnant structure and
colour flow topologies can become quite complicated, and
so-called string junctions have to be handled, see [3].

In addition, the more sophisticated machinery allowed
a more complete treatment of initial-state radiation (ISR)
and final-state radiation (FSR). That is, each simple 2 → 2
interaction could be embedded in the center of a more com-
plicated 2 → n process, n ≥ 2, where additional partons
are produced by ISR or FSR. In order to avoid double-
counting, this additional radiation should be softer than
the core 2 → 2 interaction. Here p2

⊥ is again a convenient
measure for hardness ordering, but not a unique one.

In this article, we introduce an additional interplay,
between multiple parton interactions and ISR. ISR is the
mechanism whereby parton densities evolve and become
scale-dependent. The paradigm is that parton densities at
a scale Q2, in our case identified with p2

⊥, probe the re-
solved partonic content at that scale. Therefore the issue
of multi-parton densities is mixed in with the handling of
ISR. For instance, if an ISR branching related to the first
interaction occurs at a p′

⊥1 < p⊥1 then that reduces the
available phase space for a second interaction at p⊥2 < p′

⊥1.
In the complementary region p⊥2 > p′

⊥1, it is instead the
momentum carried away by the second interaction that
reduces the phase space for the ISR branching of the first.
Thus, a consistent choice is to consider ISR (on both of
the two incoming hadron sides) and MI in parallel, in one
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common sequence of decreasing p⊥ values, where the par-
tonic structure at one p⊥ scale defines what is allowed at
lower scales. Again this approach of interleaved evolution
is intended to accurately reproduce measurements at p⊥
values corresponding to the hardest scales in the event,
and fits well with the backwards evolution approach to
ISR [4]. (One could have devised alternative procedures
with forward evolution from lower to higher p⊥ values,
which would have offered a more intuitive physics picture,
but with problems of its own.)

To the best of our knowledge, a scenario of this kind
has never before been studied. In the early multiple inter-
actions modelling [2] ISR and FSR was only included for
the hardest interaction, and this before additional interac-
tions were at all considered. In our more recent study [1] all
interactions included ISR and FSR, but again separately
for each interaction.

An additional difference is that, in our previous studies,
spacelike (for ISR) or timelike (for FSR) virtuality was used
as evolution and ordering variable in the showers. In the
framework we shall present here, an essential ingredient
is the use of p⊥-ordered showers, such that the proposed
competition between MI and ISR can be introduced in
terms of a common ordering variable. We have therefore
completed the rewriting begun in [5] of the existing Pythia
showering algorithms [6] to p⊥-ordering. These new models
have interesting features in their own right, quite apart from
the application to interleaved multiple interactions.

This article should be viewed as one step on the way to-
wards a better understanding of hadronic physics, but not
as the final word. Further issues abound. The downwards
evolution in p⊥ may also reveal that two seemingly sepa-
rately interacting partons actually have a common origin
in the branching of a single parton at a lower p⊥ scale (p⊥23
in Fig. 1), and a single parton may scatter twice against
partons in the other hadron. We shall refer to such possi-
bilities specifically as intertwined multiple interactions, to
distinguish them somewhat from the interleaved evolution
that will be our main focus here.

In this article we begin, in Sect. 2, with a description of
the new showering framework.This is followed, in Sect. 3, by
a discussion on the model for interleaving MI and ISR, and
a few results are presented in Sect. 4. The outlook in Sect. 5
contains a first estimate of the significance of the backward
evolution joining several interactions. Finally Sect. 6 gives
our conclusions.

2 New transverse-momentum-ordered showers

In this section we describe the new framework for timelike
FSR and spacelike ISR in the context of a single hard-
scattering process. We start by a brief review of the main
existing showering algorithms, to introduce the basic ter-
minology and ideas we will make use of. Thereafter the
philosophy underlying the new algorithms is outlined. The
more technical details are then described separately, first
for timelike showers and then for spacelike ones, the latter
as a rule being the more complicated.
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Fig. 2. Schematic figure with our standard terminology for
a a final-state and b an initial-state branching a → bc, with a
cross marking the central hard process and a recoiling parton
r moving out to or coming in from the other side

2.1 Shower minireview

In the shower approach, the evolution of a complex multi-
parton final state is viewed as a succession of simple parton
branchings. Thus a 2 → n process can be viewed as consist-
ing of a simple high-virtuality process, often 2 → 2, that
approximately defines the directions and energies of the
hardest jets of the process, combined with shower branch-
ings at lower virtuality scales. The shower branchings thus
add details to the simple answer, both by the production
of additional jets and by a broadening of the existing ones.
We distinguish between initial-state showers, whereby the
incoming partons to the hard process build up increasingly
spacelike virtualitiesQ2, andfinal-state showers,where out-
going partons, including the non-colliding partons emitted
from the initial state, may have timelike virtualities Q2

that decrease in the cascade down to on-shell partons.
To first order, both cascade types are governed by the

same DGLAP evolution equations [7]

dPa(z, Q2) =
dQ2

Q2

αs

2π
Pa→bc(z) dz , (1)

expressing the differential probability that a ‘mother’ par-
ton a will branch to two ‘daughter’ partons b and c, at a
virtuality scale Q2, and with parton b taking a fraction z of
the a energy, and c a fraction 1−z, cf. Fig. 2. The splitting
kernels Pa→bc(z) are (for massless quarks)

Pq→qg(z) =
4
3

1 + z2

1 − z
, (2)

Pg→gg(z) = 3
(1 − z(1 − z))2

z(1 − z)
, (3)

Pg→qq(z) =
nf

2
(z2 + (1 − z)2) , (4)

where nf is the number of quark flavours kinematically al-
lowed. The kernels can be viewed as the universal collinear
limit of the behaviour of relevant matrix-element expres-
sions. In such a context it is natural to associate Q2 with
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|m2|, the virtuality of an intermediate off-shell parton, since
a 1/m2 comes from the propagator of the virtual particle.
This is a free choice, however: if Q2 = f(z) m2, then for any
(nice) function f(z) it holds that dQ2/Q2 dz = dm2/m2 dz.
At this stage, several equivalent choices are therefore pos-
sible.

Note that eq. (1) formally corresponds to the emission
of an infinite number of partons. However, very soft and
collinear gluons will not be resolved in an infrared safe
fragmentation framework such as the string one [8], so we
are free to introduce some effective Q0 cut-off scale, of
the order of 1 GeV or ΛQCD, below which perturbative
emissions need not be considered (to first approximation).

The remaining total emission probability is still nor-
mally above unity, which is allowed for an inclusive rate
since several emissions can occur. For an exclusive parton
shower it is then convenient to introduce a ‘time’ ordering,
i.e. to decide which of the allowed emissions occur ‘first’.
This is encompassed in the Sudakov form factor [9], ex-
pressing the probability that no emissions occur between
the initial maximum scale Q2

max and a given Q2, and within
limits zmin < z < zmax that depend on the kinematics and
the Q0 cutoff,

Pno
a (Q2

max, Q
2) = exp

(
−
∫ Q2

max

Q2

∫ zmax

zmin

dPa(z′, Q′2)

)
,

(5)
so that the differential probability for the first branching to
occur at a Q2 = Q2

a is given by dPa(z, Q2
a) Pno

a (Q2
max, Q

2
a).

Once the parton a has branched, it is now the daughters b
and c that can branch in their turn, with their Q2

max given
by Q2

a, and so on until the cutoff scale is reached. Thus the
shower builds up.

Obviously, at this stage different Q2 choices are no
longer equivalent: since a will only branch once, those re-
gions of phase space considered at a later stage will be
suppressed by a Sudakov factor relative to those consid-
ered earlier.

For ISR, the most commonly adopted approach is that
of backwards evolution [4], wherein branchings are recon-
structed backwards in time/virtuality from the hard inter-
action to the shower initiators. The starting point is the
DGLAP equation for the b density

dfb(x, Q2) =
dQ2

Q2

αs

2π

∫
dx′

x′ fa(x′, Q2) Pa→bc

( x

x′
)

.

(6)
This expresses that, during a small increase dQ2 there is
a probability for parton a with momentum fraction x′ to
become resolved into parton b at x = zx′ and another
parton c at x′ − x = (1 − z)x′. Correspondingly, in back-
wards evolution, during a decrease dQ2 a parton b may
become ‘unresolved’ into parton a. The relative probabil-
ity dPb for this to happen is given by the ratio dfb/fb,
which translates into

dPb(x, Q2) =
∣∣∣∣ dQ2

Q2

∣∣∣∣ αs

2π

∫
dz

x′fa(x′, Q2)
xfb(x, Q2)

Pa→bc(z) .

(7)

Again, ordering the evolution in Q2 implies that this
‘naive probability’ should be multiplied by the probability
Pno

b (x, Q2
max, Q

2) for no emissions to occur at scales higher
than Q2, obtained from dPb by exponentiation like in (5).
As for the timelike showers, additional sophistication can be
added by coherence constraints and matrix-element merg-
ing, but ISR remains less well understood than FSR [10].

2.2 Existing approaches

Of the three most commonly used final-state shower al-
gorithms, Pythia uses m2 as evolution variable [11, 12],
while Herwig uses an energy-weighted emission angle,
E2(1−cos θ) ∼ m2/(z(1−z)) [13], and Ariadne a squared
transverse momentum, ∼ z(1 − z)m2 [14–16]. Thus the
three programs give priority to emissions with large in-
variant mass, large emission angle and large transverse
momentum, respectively.

The Herwig algorithm makes angular ordering a di-
rect part of the evolution process, and thereby correctly
(in an azimuthal-angle-averaged sense) takes into account
coherence effects in the emission of soft gluons [17]. Branch-
ings are not ordered in hardness: often the first emission
is that of a soft gluon at wide angles. The algorithm does
not populate the full phase space but leaves a ‘dead zone’
in the hard three-jet region, that has to be filled up sepa-
rately [18]. The kinematics of a shower is only constructed
at the very end, after all emissions have been considered.

The Pythia algorithm is chosen such that the shower
variables closely match the standard three-jet phase space
in e+e− → qqg, and such that the shower slightly overpop-
ulates the hard three-jet region, so that a simple rejection
step can be used to obtain a smooth merging of all relevant
first-order gluon-emission matrix elements with the shower
description [12]. The mass-ordering of emissions is one pos-
sible definition of hardness-ordering. The main limitation
of the algorithm is that it does not automatically include
coherence effects. Therefore angular ordering is imposed by
an additional veto, but then cuts away a bit too much of the
soft-gluon phase space [19]. The kinematics of a branching
is not constructed until the daughters have been evolved
in their turn, so that their virtualities are also known.

The Ariadne algorithm differs from the above two in
that it is formulated in terms of dipoles, consisting of parton
pairs, rather than in terms of individual partons. The two
partons that make up a dipole may then collectively emit a
gluon, causing the dipole to split in two. Thus the basic pro-
cess is that of one dipole branching into two dipoles, rather
than of one parton branching into two partons. Emissions
are ordered in terms of a decreasing transverse momen-
tum, which automatically includes coherence effects [14],
and also is a good measure of hardness. Kinematics can be
constructed, in a Lorentz invariant fashion, immediately
after each branching, with individual partons kept on mass
shell at each stage. This makes it easy to stop and restart
the shower at some intermediate p⊥ scale. The implemen-
tation of an (L)CKKW-style matching of matrix elements
with parton showers [20] is therefore simplified, and in par-
ticular Sudakov factors can be generated dynamically to
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take into account the full kinematics of the branching his-
tory (while the MLM ME/PS matching prescription [21] of
course remains equally applicable for this as for any of the
other algorithms). A disadvantage is that g → qq branch-
ings do not fit naturally into a dipole framework, since they
cannot be viewed as one dipole branching into two.

In experimental tests, e.g. comparedwithLEPdata [22],
the three final-state algorithms all offer acceptable descrip-
tions. If Herwig tends to fare the worst, it could partly
reflect differences in the hadronization descriptions, where
the Herwig cluster approach is more simplistic than the
Pythia string one, also used by Ariadne. Among the
latter two, Ariadne tends to do somewhat better.

The above three programs also can be used for initial-
state showers. For Herwig the evolution variable is again
angular-defined, and forPythianowQ2 = −m2. Bothpro-
grams make use of backwards evolution, as described above.

By contrast, the Ariadne approach defines radiating
dipoles spanned between the remnants and the hard scat-
tering [23], and thereby cannot easily be related to the
standard DGLAP formalism. Ldcmc is a more sophisti-
cated approach [24], based on forward evolution and uninte-
grated parton densities, and equivalent to the CCFM equa-
tions [25].

2.3 The new approach

In this article we wish to modify/replace the existing
Pythia shower routines so that emissions are ordered in
p2

⊥ rather than in Q2 = ±m2, and also include some of
the good points of the dipole approach within the shower
formalism. Specifically we
• retain the shower language of one parton branching into

two, such that g → qq appears on equal footing with
other branchings,

• make use of a simplified p2
⊥ as evolution variable, picked

such that the translation p2
⊥ ↔ ±m2 is trivial, thereby

preserving all the sophistication of the existing matrix-
element-merging,

• construct a preliminary kinematics directly after each
branching, with currently unevolved partons explicitly
on mass shell,

• define a recoil partner, ‘recoiler’, for each branching par-
ton, ‘radiator’, to keep the total energy and momentum
of the radiator+recoiler ‘dipole’ preserved whenever a
parton previously put on mass shell is assigned a vir-
tuality, and

• ensure that the algorithms can be stopped and restarted
at any given intermediate p⊥ scale without any change
of the final result, so that they can be used for inter-
leaving showers and multiple interactions (and also for
(L)CKKW-style matching, although this will not be
made use of here).

2.3.1 Transverse momentum definitions

So far, we have used p⊥ to denote a general kind of ‘trans-
verse momentum’, without specifying further the details of

which momentum we are talking about and which direction
it is transverse to. It is now our purpose to specify more
closely which precise definition(s) we have in mind, and to
give a comparison to some other commonly encountered
p⊥ definitions.

To specify a p⊥ suitable for a branching a → bc, consider
lightcone kinematics, p± = E±pz, forwhich p+p− = m2

⊥ =
m2 + p2

⊥. For a moving along the +z axis, with p+
b = zp+

a

and p+
c = (1 − z)p+

a , p− conservation then gives

m2
a =

m2
b + p2

⊥
z

+
m2

c + p2
⊥

1 − z
(8)

or equivalently

p2
⊥ = z(1 − z)m2

a − (1 − z)m2
b − zm2

c = p2
⊥LC . (9)

For a timelike branching Q2 = m2
a and mb = mc = 0,

so then p2
⊥LC = z(1 − z)Q2. For a spacelike branching

Q2 = −m2
b and ma = mc = 0, so instead p2

⊥LC = (1−z)Q2.
We use these relations to define abstract evolution variables
p2

⊥evol = z(1 − z)Q2 or = (1 − z)Q2, in which to order the
sequence of shower emissions.

However, this is not the z definition we will use to
construct the kinematics of the branchings. For this, we
interpret z to give the energy sharing between the daugh-
ters, in the rest frame of the radiator+recoiler system,
Eb = zEa and Ec = (1− z)Ea. The latter z interpretation
gives nice Lorentz invariance properties – energies in this
frame are easily related to invariant masses, 2Ei/mijk =
1 − m2

jk/m2
ijk for the ijk three-parton configuration after

the radiation – but gives more cumbersome kinematics re-
lations, specifically for p⊥. This is the reason we use the
lightcone relations to define the evolution variable while
we use the energy definition of z to construct the actual
kinematics of the branchings.

The deliberate choice of maintaining this dichotomy
can be better understood by examining a few different p⊥
definitions in common use, in particular those in clustering
algorithms. To this end consider first the situation depicted
inFig. 3a:With the twoparticlesmassless, so thatE1 = |p1|
and E2 = |p2|, the momentum transverse to the vector sum
p1 + p2, which would correspond to the momentum of an
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Fig. 3. a Schematic figure of the clustering of two particles.
b A topology with a large θ12 but a small p⊥1,2
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imagined mother, is

p⊥ =
|p1 × p2|
|p1 + p2| =

E1E2 sin θ12√
E2

1 + E2
2 + 2E1E2 cos θ12

= p⊥1,2 .

(10)
There is one troubling feature of this p⊥1,2: not only does
it vanish when the opening angle θ12 goes to zero, but it
also vanishes for θ12 → π (unless E1 ≡ E2). Physically it
is clear what is happening in this limit: the parton with
larger energy is going along the p1 + p2 direction and
the one with smaller energy is just opposite to it, Fig. 3b.
In a clustering algorithm, where the idea is to combine
‘nearby’ particles, a measure with such a behaviour clearly
is undesirable. Even when the starting point would be to
have a p⊥-related measure for small θ12, we would prefer
to have this measure increase monotonically for increasing
θ12, given fix E1 and E2, and behave a bit more like the
invariant mass at large angles. Therefore, in the Luclus
algorithm [26], the replacements sin θ12 → 2 sin(θ12/2) and
|p1 + p2| → E1 + E2 are performed, so that

p⊥ =
|p1 × p2|
|p1 + p2| → E1E22 sin(θ12/2)

E1 + E2
= p⊥L . (11)

But, since sin2(θ12/2) = (1−cos θ12)/2, it also follows that

p2
⊥L =

E1

E1 + E2

E2

E1 + E2
2E1E2(1 − cos θ12)

� z(1 − z)m2 = p2
⊥evol , (12)

given our z definition in the shower as being one of en-
ergy sharing.

The p⊥L and p⊥evol are not completely equivalent: for
the shower algorithm to be Lorentz invariant it is essential
that the energies in the z definition are defined in the ra-
diator+recoiler rest frame, whereas the Luclus algorithm
normally would be applied in the rest frame of the event as
a whole. Nevertheless, we gain some understanding why the
choice of p2

⊥evol as evolution variable actually may be more
physically meaningful than p2

⊥1,2. Specifically, for the emis-
sion of a gluon off a qq dipole, say, we retain the subdivision
of radiation from the mass-ordered algorithm, roughly in
proportions 1/m2

qg : 1/m2
qg for q → qg : q → qg. With

the p2
⊥1,2 measure, q radiation close to the q would not

be disfavoured, since also θ12 → π would be classified as a
collinear emission region.

The Durham clustering algorithm [27] is intended to
represent the transverse momentum of the lower-energy
parton relative to the direction of the higher-energy one, but
again modified to give a sensible behaviour at large angles:

p⊥rel = min(E1, E2) sin θ12

→ min(E1, E2) 2 sin(θ12/2) = p⊥D (13)

Thereby it follows that

(p⊥evol �) p⊥L =
max(E1, E2)

E1 + E2
p⊥D (14)

so the two p⊥ measures never disagree by more than a
factor of two, and coincide in the soft-gluon limit.

In the Ariadne dipole emission approach, finally, the
p⊥ is defined as the momentum of the emitted parton
relative to the axis of the emitting partons [16]. For the
emission of a soft parton 3 from the 1 and 2 recoiling parton
dipole one can then derive

p2
⊥A =

m2
13m

2
23

m2
123

. (15)

When the m2 = m2
13 → 0 limit is considered, this cor-

responds to p2
⊥A ≈ (1 − z)m2, rather than the p2

⊥L ≈
z(1− z)m2. That is, for the soft-gluon limit z → 1 the two
measures agree, while they disagree in the hard-gluon limit
z → 0: p2

⊥A ≈ m2 � zm2 ≈ p2
⊥L. It is not clear whether

this difference by itself would have any visible consequences,
but it illustrates that the meaning of ‘p⊥-ordered emission’
is not uniquely defined.

2.3.2 The new algorithms

Taking into account the above considerations, the basic
strategy of the algorithms therefore can be summarized
as follows:
1. Define the evolution variable p2

⊥evol,

FSR : p2
⊥evol = z(1 − z)Q2 , (16)

ISR : p2
⊥evol = (1 − z)Q2 . (17)

2. Evolve all radiators downwards in p2
⊥evol, from a p2

⊥max
defined either by the hard process or by the preceding
shower branching, to find trial branchings according to
the respective evolution equation,

FSR :

dPa =
dp2

⊥evol

p2
⊥evol

αs(p2
⊥evol)
2π

× Pa→bc(z) dz Pno
a (p2

⊥max, p
2
⊥evol) , (18)

ISR :

dPb =
dp2

⊥evol

p2
⊥evol

αs(p2
⊥evol)
2π

x′fa(x′, p2
⊥evol)

xfb(x, p2
⊥evol)

× Pa→bc(z) dz Pno
b (x, p2

⊥max, p
2
⊥evol) . (19)

Note that we have chosen p2
⊥evol as scale both for parton

densities and αs [28]. The Sudakov form factors are, as
before, obtained by exponentiation of the respective
real-emission expressions.

3. Select the radiator+recoiler set with the largest trial
p2

⊥evol to undergo the next actual branching.
4. For this branching, use the picked p2

⊥evol and z values
to derive the virtuality Q2,

FSR : m2
a = Q2 =

p2
⊥evol

z(1 − z)
, (20)

ISR : −m2
b = Q2 =

p2
⊥evol

1 − z
. (21)
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5. Construct kinematics based on Q2 and z
a in the radiator+recoiler rest frame,
b defining z in terms of energy fractions, or equivalently
mass ratios,
c assuming that yet unbranched partons are on-shell
and that the current two ‘earliest’ ISR partons are mass-
less, and
d shuffling energy–momentum from the recoiler as re-
quired.

6. Iterate towards lower p2
⊥evol until no further branchings

are found above the lower cutoff scale p2
⊥min.

We now proceed to fill in the details for the respective al-
gorithms.

2.4 Timelike showers

2.4.1 The basic formalism

At each step of the evolution there is a set of partons that
are candidates for further branching. Each such radiator
defines dipoles together with one or several recoiler partons.
Normally these recoilers are defined as the parton carrying
the anticolour of the radiator, where colour indices in a
cascade are traced in the NC → ∞ limit. A gluon, with
both a colour and an anticolour index, thus has two part-
ners, and the nominal emission rate is split evenly between
these two. Since the kinematics constraints in the two radi-
ator+recoiler dipoles normally will be different, the actual
emission probabilities will not agree, however.

To illustrate, consider e+e− → γ∗/Z0 → qqg, where
one gluon has already been radiated. The quark is then
a radiator, with the gluon as recoiler, but also the gluon
is a radiator with the quark as recoiler. Similarly for the
antiquark–gluon pair. There is no colour dipole directly
between the quark and the antiquark. On the other hand,
we may also allow photon emission via the shower branch-
ing q → qγ, similarly to q → qg, and for such branchings
indeed the quark and the antiquark are each other’s re-
coilers, while the uncharged gluon is not involved at all.
In total, this configuration thus corresponds to six possi-
ble radiator+recoiler sets. Each of these are to be evolved
downwards from the p2

⊥evol scale of the first gluon emis-
sion, and the one with largest new p2

⊥evol is chosen as the
next evolution step to be realized. Thereafter the whole
procedure is iterated, to produce one common sequence of
branchings with p⊥max > p⊥1 > p⊥2 > . . . > p⊥min.

A special case is where a narrow coloured resonance is
concerned, as for instance in top decay to bW+. Here, gluon
emissions with energies above the width of the top should
not change the top mass. They are constrained inside the
top system. (In fact, when b → bg, the other end of the
colour dipole is rather defined by the decaying top itself.)
Technically, the W+ may then be chosen as the recoiler
to the b, to ensure that the top mass remains unchanged.
In this case all radiation is off the b, i.e. the system only
contains one gluon radiator, and this is enough to reproduce
the desired rate [12].

Once a recoiler has been assigned, the kinematics of
a branching is suitably defined in the rest frame of the

radiator+recoiler system, with the radiator a (recoiler r)
rotated to move out along the +z (−z) axis. Then one
may define m2

ar = (pa + pr)2. For massless partons, the
introduction of an off-shell Q2 = m2

a = p2
⊥evol/z(1 − z)

increases Ea from mar/2 to (m2
ar + Q2)/2mar, with Er

reduced by the same amount. The two daughters share
the energy according to Eb = zEa and Ec = (1 − z)Ea.
With the modified a still along the +z axis, the transverse
momentum of the two daughters then becomes

p2
⊥b,c =

z(1 − z)(m2
ar + Q2)2 − m2

arQ
2

(m2
ar − Q2)2

Q2

≤ z(1 − z)Q2 = p2
⊥evol . (22)

The kinematics can now be completed, rotating and boost-
ing the two daughters and the modified recoiler back to
the original frame.

Note that p2
⊥b,c and p2

⊥evol always coincide for z = 1/2,
and agree well over an increasing z range as Q2/m2

ar → 0.
We have already explained why p2

⊥evol is a better evolution
variable than p2

⊥b,c. In addition, there are technical advan-
tages: had evolution been performed in p2

⊥b,c, the extrac-
tion of a Q2 from p2

⊥b,c would require solving a third-degree
equation, which would be messy and possibly give several
solutions. The allowed z range would also be nontrivially
defined. As it is now, the requirement Q2 < m2

ar easily
leads to a range zmin < z < zmax for p2

⊥evol, with

zmin,max =
1
2


1 ∓

√
1 − p2

⊥evol

m2
ar


 . (23)

Once a trial p2
⊥evol and z has been picked, and thereby Q2 is

known, an acceptable solution has to be in the smaller range

zmin,max =
1
2

(
1 ∓ m2

ar − Q2

m2
ar + Q2

)
(24)

for p2
⊥b,c > 0 to be valid.

It is the choice of a dipole-style phase space in conjunc-
tion with p2

⊥ as evolution variable that ensures the angular
ordering required for coherence [14,19].

2.4.2 Further details

(i) The colour topology of an event needs to be updated
after each branching, so as to define possible recoilers for
the next step of the evolution, and also for the subsequent
hadronization. Most of this is trivial, since we work in
the NC → ∞ limit: for q → qg the original quark colour
is inherited by the gluon and a new colour dipole is cre-
ated between the two daughters, while for g → qq the
(anti)quark takes the gluon (anti)colour. Somewhat more
tricky is g → gg, where two inequivalent possibilities ex-
ist. We here use the rewriting of the splitting kernel [15],
(1 − z(1 − z))2/z(1 − z) = 1

2 (1 + z3)/(1 − z) + (1 + (1 −
z)3)/z � (1 + z3)/(1 − z), to associate a 1 − z picked ac-
cording to the right-hand side with the energy fraction
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of the ‘radiated’ gluon that carries away the ‘radiating’
(anti)colour of the original gluon.
(ii) The above p⊥ equations have been written for the
case of massless partons. It is straightforward to generalize
to massive partons, however, starting from the formalism
presented in [12]. There it was shown that the natural
variable for mass-ordered evolution of a parton a with on-
shell mass ma,0 is Q2 = m2

a − m2
a,0, since this reproduces

relevant propagators. Now the generalization is

p2
⊥evol = z(1 − z)(m2

a − m2
a,0) . (25)

Furthermore, in the handling of kinematics, the z variable
is reinterpreted to take into account masses [12].
(iii) Whether radiation off massive or massless partons
is considered, matrix-element expressions are available for
the one-gluon emission corrections in a → bc decays in
the standard model and its minimal supersymmetric ex-
tension, say γ∗/Z0 → qq or g̃ → q̃q [12]. Since the shower
overpopulates phase space relative to these expressions, a
simple veto step can be used to smoothly merge a matrix-
element behaviour for hard non-collinear emissions with
the shower picture for soft and collinear ones. When the
b+c system radiates repeatedly, the matrix-element correc-
tions are applied to the system at the successively reduced
energy. This ensures that a good account is given of the
reduced radiation in the collinear region by mass effects.
For g → qq branchings, mass effects and subsequent gluon
emissions off the quarks are given the same corrections as
for γ∗ → qq branchings, i.e. disregarding the difference in
colour structure.
(iv) No guarantees are given that emissions beyond the
first cover the whole phase space. In fact, it has been shown
that Ariadne does not [29], but that an average over
physically indistinguishable configurations gives a sensible
behaviour. We would expect a similar statement to hold for
our algorithm. As a simple check, Fig. 4 compares invariant
mass distributions in four-parton uugg events between our
program and O(α2

s ) matrix elements [30]. To this end,
the shower was stopped after the first two branchings.
We then required yij = m2

ij/E2
cm > 0.01, as has been

 0

 2

 4

 6

 8

10

 0  0.2  0.4  0.6  0.8  1

shower m(q+qbar)
ME m(q+qbar)
shower m(g+g)

ME m(g+g)

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.2  0.4  0.6  0.8  1

shower m(q+cc g)
ME m(q+cc g)

shower m(q+ncc g)
ME m(q+ncc g)

Fig. 4. Scaled invariant mass distributions mij/Ecm in four-
parton uugg events at 100 GeV with yij = m2

ij/E2
cm > 0.01. Left

frame shows muu and mgg, right mug (and mug by symmetry)
subdivided into pairs that are directly colour-connected (cc) or
not (ncc). Each distribution has been normalized to unit area

common at LEP. The scaled invariant masses √
yij are

then plotted for qq, gg and qg separately, in the latter case
further subdivided in pairs where the q and g are nearest
neighbours in colour (colour-connected) or not. As we see,
all distributions agree as well as could be expected, with
no discontinuous features or holes in the shower coverage.
(v) Azimuthal ϕ angles are selected isotropically in q →
qg branchings, but nonisotropically for g → gg and g →
qq to take into account gluon polarization effects [31].
Anisotropies from coherence conditions are not included
explicitly, since some of that is implicitly generated by the
dipole kinematics.
(vi) We use a first-order

αs(p2
⊥) = 12π/

(
(33 − 2nf ) ln

(
p2

⊥/Λ2
(nf )

))
,

matched at the mc and mb mass thresholds, where default
is mc = 1.5 GeV and mb = 4.8 GeV.

2.4.3 Algorithm tests

Ultimately, the usefulness of a shower algorithm is gauged
by its ability to describe data. Obviously, we have checked
that the results of the new routine qualitatively agree with
the old program, which is known to describe data reason-
ably well. A more detailed study has been performed by
G. Rudolph [32], who has compared our algorithm with
ALEPH data at the Z0 peak [22]. A tune to a set of event
shapes and particle spectra gives a total χ2 that is roughly
2/3 of the corresponding value for the old mass-ordered
evolution, i.e. a marked improvement. Of the distribu-
tions considered, the only one that does not give a decent
description is the single-particle p⊥out spectrum, i.e. the
transverse momentum out of the event plane, in the region
p⊥out > 0.7 GeV. This is a common problem for showering
algorithms, and in fact was even bigger in the mass-ordered
one. With the exception of this region, the χ2 per degree
of freedom comes down to the order of unity, if one to the
experimental statistical and systematical errors in quadra-
ture adds an extra term of 1% of the value in each point.
That is, it appears plausible that the overall quality of the
algorithm is at the 1% level for most observables at the Z0

peak.
Some of the tuned values have changed relative to the

old algorithm. Specifically the first-order five-flavour Λ is
roughly halved to 0.140 GeV, and the cutoff parameter is
reduced from mmin ≈ 1.6 GeV to 2p⊥min ≈ 0.6 GeV. The
former represents a real enough difference in the capability
of the algorithms to populate the hard-emission region,
while the latter is less easily interpreted and less crucial,
since it deals with how best to match perturbative and
nonperturbative physics, that is largely compensated by
retuned hadronization parameters.

2.5 Spacelike showers

2.5.1 The basic formalism

At any resolution scale p2
⊥evol = (1 − z)Q2 the ISR al-

gorithm will identify two initial partons, one from each
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incoming hadron, that are the mothers of the respective
incoming cascade to the hard interaction. When the resolu-
tion scale is reduced, using backwards evolution according
to (19), either of these two partons may turn out to be the
daughter b of a previous branching a → bc. The (currently
resolved) parton r on the other side of the event takes on
the role of recoiler, needed for consistent reconstruction of
the kinematics when the parton b previously considered
massless now is assigned a spacelike virtuality m2

b = −Q2.
This redefinition should be performed in such a way that
the invariant mass of the b + r system is unchanged, since
this mass corresponds to the set of outgoing partons already
defined by the hard scattering and by partons emitted in
previously considered branchings. The system will have
to be rotated and boosted as a whole; however, to take
into account that b not only acquires a virtuality but also
a transverse momentum; if previously b was assumed to
move along the event axis, now it is a that should do so.

At any step of the cascade, the massless mothers suit-
ably should have four-momenta given by pi = xi (

√
s/2)

(1; 0, 0,±1) in the rest frame of the two incoming beam
particles, so that ŝ = x1x2s. If this relation is to be pre-
served in the a → bc branching, the z = xb/xa should fulfil
z = m2

br/m2
ar = (pb + pr)2/(pa + pr)2. As we have already

noted, z definitions in terms of squared mass ratios are
easily related to energy sharing in the rest frame of the
process. This is illustrated by explicit construction of the
kinematics in the a+r rest frame, assuming a moving along
the +z axis and c massless:

pa,r =
mar

2
(1; 0, 0,±1) , (26)

pb =

(
mar

2
z;

√
(1 − z)Q2 − Q4

m2
ar

, 0,

mar

2

(
z +

2Q2

m2
ar

))
, (27)

pc =

(
mar

2
(1 − z); −

√
(1 − z)Q2 − Q4

m2
ar

, 0,

mar

2

(
1 − z − 2Q2

m2
ar

))
. (28)

For simplicity we have here put the azimuthal angle ϕ = 0.
Note that

p2
⊥b,c = (1 − z)Q2 − Q4

m2
ar

< (1 − z)Q2 = p2
⊥evol . (29)

For small Q2 values the two measures p2
⊥b,c and p2

⊥evol
agree well, but with increasing Q2 the p2

⊥b,c will eventually
turn over and decrease again (for fixed z and mar). Simple
inspection shows that themaximum p2

⊥b,c occurs for p‖c = 0
and that the decreasing p2

⊥b,c corresponds to increasingly
negative p‖c. The drop of p2

⊥b,c thus is deceptive, and does
not correspond to our intuitive picture of time ordering.
Like for the FSR algorithm, p2

⊥evol therefore makes more

sense than p2
⊥b,c as evolution variable, in spite of it not

always having as simple a kinematics interpretation. One
should note, however, that emissions with negative p‖c are
more likely to come from radiation off the other incoming
parton, where it is collinearly enhanced, so in practice the
region of decreasing p2

⊥b,c is not so important.
The allowed range zmin < z < zmax is from below

constrained by xa = xb/z < 1, i.e. zmin = xb, and from
above by p2

⊥b,c > 0, which gives

zmax = 1 − p⊥evol

mbr

(√
1 +

p2
⊥evol

4m2
br

− p⊥evol

2mbr

)
. (30)

When the a → bc kinematics is constructed, the above
equations for pa,b,c,r are not sufficient. One also needs to
boost and rotate all the partons produced by the incoming
b and r partons. The full procedure then reads
1. Go to the b+r rest frame,withpb,r=(mbr/2) (1; 0, 0,±1).
2. Rotate by a randomly selected azimuthal angle −ϕ.
3. Put the b off mass shell, Q2 = −m2

b = p2
⊥evol/(1 − z),

while preserving the total b + r four-momentum, i.e.
pb,r = ((m2

br ∓ Q2)/2mbr; 0, 0,±(m2
br + Q2)/2mbr).

4. Construct the massless incoming pa in this frame, and
the outgoing c, from the requirements (pa + pr)2 =
m2

br/z and p2
c = (pa −pb)2 = m2

c(= 0), and with trans-
verse momentum in the x direction [4].

5. Boost everything to the a+r rest frame, and thereafter
rotate in θ to have a moving along the +z axis.

6. Finally rotate +ϕ in azimuth, with the same ϕ is in
point 2. This gives c a random ϕ distribution, while
preserving the ϕ values of the b + r daughters, up to
recoil effects.
Apart from the change of evolution variable, the major

difference relative to the old algorithm [4] is that kinematics
is now constructed with the recoiler assumed massless,
rather than only after it has been assigned a virtuality
as well.

Currently a smooth merging with first-order matrix ele-
ments is only available for the production of γ∗/Z0/W± [33]
and gg → H0 (in the infinitely-heavy-top-mass limit). It
turns out that the shower actually does a reasonable job of
describing radiation also harder than the mass scale of the
electroweak production process, i.e., the matrix-element
reweighting factors are everywhere of the order of unity.
Unless there are reasons to the contrary, for non-QCD pro-
cesses it therefore makes sense to start the shower from a
p⊥max =

√
s/2. For a normal QCD process this would lead

to doublecounting, since the shower emissions could be
harder than the original hard process, but this risk does
not exist for particles like the Z0, which are not produced
in the shower anyway.

2.5.2 Mass corrections

Quark mass effects are seldom crucial for ISR: nothing
heavier than charm and bottom need be considered as
beam constituents, unlike the multitude of new massive
particles one could imagine for FSR. Here the mass effects
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are less trivial to handle, however, since we may get stuck
in impossible corners of phase space.

To illustrate this, consider g → QQ, where we let Q
denote a generic heavy quark, charm or bottom. Then
requiring the lightcone p2

⊥LC = (1 − z)Q2 − zm2
Q > 0,

(9) with ma = 0, mc = mQ and Q2 = −m2
b , implies

z < Q2/(Q2 + m2
Q). Since xa = xb/z < 1 it follows that

the Q parton density must vanish for x > Q2/(Q2 + m2
Q).

Many parton density parameterizations assume vanishing
Q density below Q2 = m2

Q and massless evolution above
it, and so do not obey the above constraint.

Actually, with our energy-sharing z definition, now
slightly modified but still preserving z = m2

br/m2
ar, (29) is

generalized to

p2
⊥b,c = (1 − z)Q2 − Q4

m2
ar

− m2
Q

(
z +

Q2

m2
ar

)

= Q2 − z
(Q2 + m2

Q)(m2
br + Q2)

m2
br

. (31)

which implies the somewhat tighter constraint

xb < z <
Q2

Q2 + m2
Q

m2
br

m2
br + Q2 . (32)

For the backwards evolution of g → QQ, the evolution
variable is chosen to be

p2
⊥evol = (1 − z)(Q2 + m2

Q) = m2
Q + p2

⊥LC , (33)

such that a threshold set at p2
⊥evol = m2

Q corresponds to
p2

⊥LC → 0. Thereby, the evolution scale p2
⊥evol may be

used as argument for αs and for parton densities, while the
physical p⊥ will still populate the full phase space.

Writing the upper limit in terms of the evolution vari-
able p2

⊥evol rather thanQ2, one obtains the analogue of (30),

zmax = 1 − p⊥evol

mbr

1

1 − m2
Q

m2
br

(
1 + m2

br
p2

⊥evol

) (34)

×


√

1 +
p2

⊥evol − m2
Q

4m2
br

− p⊥evol

2mbr

(
1 +

m2
Q

p2
⊥evol

) .

This expression would be rather cumbersome to deal with
in practice, but is bounded from above,

zmax <
mbr(mbr − mQ)

m2
br + mQmbr − m2

Q
, (35)

which we make use of in the evolution.
Should a hard-scattering configuration be inconsistent

with these constraints, it is rejected as unphysical. Should
the shower end up in such a region during the backwards
evolution, a new shower is generated. Even when no such
disasters occur, the fact that the physically allowed z range
is smaller than what has been assumed in standard parton
density parameterizations implies that more heavy quarks

can survive to the near-threshold region than ought to be
the case. This could be amended by an ad hoc compensating
weight factor in the splitting kernel, but currently we have
not studied this further.

Another technical problem is that, when performing
the backwards evolution, (19), one needs to estimate from
above the ratio of parton densities, in order for the veto
algorithm to be applicable [6]. Normally, densities fall off
with x (the exception being valence quarks, for which some
extra consideration is required) and have a modest scale
dependence, so that

x′fa(x′, p2
⊥evol)

xfb(x, p2
⊥evol)

<
xfa(x, p2

⊥evol)
xfb(x, p2

⊥evol)
� xfa(x, p2

⊥max)
xfb(x, p2

⊥max)
.

(36)
Now, however, the denominator fb = fQ vanishes for
p2

⊥evol → m2
Q, and so does not obey the above relation.

Given that fQ(x, Q2) increases roughly like ln(Q2/m2
Q), a

reasonable alternative approximation is

x′fg(x′, p2
⊥evol)

xfQ(x, p2
⊥evol)

<
xfg(x, p2

⊥evol)
xfQ(x, p2

⊥evol)

� ln(p2
⊥max/m2

Q)
ln(p2

⊥evol/m2
Q)

xfg(x, p2
⊥max)

xfQ(x, p2
⊥max)

. (37)

The 1/ ln(p2
⊥evol/m2

Q) prefactor can be incorporated into
the choice of the next trial emission, so that steps taken
in p2

⊥evol get shorter and shorter as the threshold is ap-
proached, until a valid branching is found.

Finally, the g → QQ splitting function should be modi-
fied. The appropriate expressions may be identified by con-
sidering the collinear limit of relevant matrix elements. Ne-
glecting overall factors, g → QQ is equivalent to γ → µ+µ−
with massive muons. Considering the t → 0 limit of pro-
cesses such as γνµ → µ−W+ and γµ− → µ−H0, and letting
m2

µ/m2
W,H → 0, we thus obtain:

Pg→QQ(z) =
1
2

(
z2 + (1 − z)2 + 2z(1 − z)

m2
Q

p2
⊥evol

)
,

(38)
which approaches a flat 1/2 for p2

⊥evol → m2
Q.

Since g → QQ and Q → Qg compete in the backwards
evolution of a heavy quark, the p2

⊥evol = (1− z)(Q2 +m2
Q)

of (33) is used also here. The kinematics interpretation is
now slightly different, however. The branching Q is forced
to be massless, so the kinematics is in this case identical
to that of a light-quark q → qg branching. However, since
the massive p2

⊥evol is different from the massless one, the
z limit expressed in terms of p2

⊥evol also becomes different
from (30):

zmax = 1 − p⊥evol

mbr

1

1 − m2
Q

m2
br

×



√√√√1 +

p2
⊥evol

4m2
br

(
1 − m2

Q

p2
⊥evol

)2
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− p⊥evol

2mbr

(
1 +

m2
Q

p2
⊥evol

) . (39)

As before, also the splitting kernel receives a mass cor-
rection. For Q → Qg, this may be obtained by considering
the equivalent processes µ−ν̄µ → γW− and µ+µ− → γH0

in the same limits as above, yielding:

PQ→Qg(z) =
4
3

(
1 + z2

1 − z
− 2z(1 − z)

m2
Q

p2
⊥evol

)
, (40)

i.e. the mass correction here has the same form but the
opposite sign as for g → QQ.

Finally, in the branching Q → gQ, a gluon is emitted
by a heavy quark, which in its turn must come from a
g → QQ branching. Thus both the Q and Q must be put
on the mass shell, which implies significant kinematical
constraints. The process is rare, however, and currently we
have not considered it further.

2.5.3 Algorithm tests

While a FSR algorithm can be tested in e+e− annihila-
tion events, where only hadronization need be considered
in addition, the busier environment in hadron colliders
makes ISR algorithms more complicated to test. One of
the few clean measurements is provided by the p⊥ spec-
trum of Z0 bosons. This quantity has been studied for the
new algorithm (without the inclusion of incoming heavy
flavours) [34], with the conclusion that it there does at least
as well as the old Pythia algorithm. This is not surprising
since the two are not so very different, apart from the Q2

vs. p2
⊥ ordering issue.

Actually, belowandaround thedσ/dp⊥Z peak, at p⊥Z ≈
4 GeV at the Tevatron, a difference would have been wel-
come, since the old algorithm requires an uncomfortably
large primordial k⊥ of around 2 GeV to provide a decent
fit. Unfortunately the new requires about the same. The
number can be reduced by using a larger Λ in the algo-
rithms than that of the parton densities. Such a procedure
can be motivated by noting that the actual evolution in
a generator contains various kinematical and dynamical
suppressions not found in the leading-log parton evolution
equations [34]. A fit to the whole dσ/dp⊥Z spectrum in the
peak region does not favour significant reductions of the
primordial k⊥, however. This might be viewed as indica-
tions for the need of physics beyond standard DGLAP [10].

2.6 Combining spacelike and timelike showers

The separation of ISR and FSR is not unambiguous: it is
possible to shuffle contributions between the two, i.e. take
fewer but longer steps in rapidity for the ISR and com-
pensate that by more extensive FSR radiation off those
ISR partons that are emitted [24]. In part, compensation
mechanisms of this kind automatically occur: if ISR partons

are more widely spaced then the colour dipoles spanned
between them become larger and thereby the FSR is in-
creased, at least to some extent.

We defer further studies of the optimal balance between
the two, and for now pick a simple strategy:
• The initial-state shower is first handled in full. This

provides a set of final-state partons, from the hard inter-
actions and from the c partons of all a → bc branchings
in the ISR chains.

• Each final-state parton is associated with a p⊥ scale at
which it was formed, either the hard-scattering scale or
the p⊥evol of the ISR evolution.

• Each coloured final-state parton is also connected to
other final-state partons to form colour dipoles. Nor-
mally these dipole partners would also act as recoilers.
Top decay has been mentioned as one example where
this would not be the case, but such decays can be
considered separately from the production processes
studied here, and before the tops decay they can act
both as radiators and recoilers. When a colour-singlet
particle like the Z0 is produced, there is a freedom to ad-
mit this as a recoiler, to the hardest parton emitted on
either side of it, or to let those two partons act as each
other’s recoilers, just like they are colour-connected.
For now we choose the latter strategy.

• The lowest-p⊥evol parton emitted on either side of the
event is colour-connected to the beam remnant. A rem-
nant does not radiate, but can act as recoiler; since the
momentum transfer will predominantly be in the lon-
gitudinal direction, it will not give rise to any unphys-
ical p⊥ kicks. The internal structure of the remnant
then has to be resolved beforehand, since a small radi-
ator+recoiler invariant mass implies a restricted phase
space for emissions. Such a dependence of perturbative
physics on nonperturbative assumptions may be a bit
uncomfortable. As an option, we have studied a scenario
without any emissions at all off this radiator+recoiler
set. Since the affected parton normally is a low-p⊥evol
one, and the potential additional activity should occur
below this already low scale, one would not expect large
differences, and indeed this is confirmed by our studies.

• The issue of what to do with loose colour ends is
more important if one intends to stop and restart the
showers (both ISR and FSR) at large p⊥ scales, as
in a (L)CKKW-style matching to higher-order matrix-
element programs [20]. We therefore consider two al-
ternatives for the FSR activity off the dipoles defined
by the ISR branchings. In one, each parton of a dipole
radiates with a maximum p⊥ scale set by its production
p⊥, phase space constraints permitting. In the other,
the maximum radiation scale in a dipole is set by the
smaller of the two endpoint parton production p⊥ val-
ues, i.e. a dipole does not radiate above the scale atwhich
it is ‘formed’. Technically, the latter option offers the
possibility to combine ISR and FSR emissions in one
common sequence of decreasing p⊥ values, certainly a
boon for matching procedures. The choice of maximum
emission scale is not unique, since the shower language
offers little guidance in the regions where several p⊥
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values are of comparable magnitude. In this case, that
would be the emission or not of a hard FSR parton off
the harder of the ISR ones. Practical experience could
tell which is preferable.

• For now, however, all ISR activity is finished before the
system is evolved with the FSR algorithm, downwards
in p⊥evol. Initially only the hardest partons can therefore
radiate, but as p⊥evol is reduced also more of the partons
from the ISR cascades can radiate, below the respective
scale at which they themselves or their dipole were
produced, depending on the option used.

3 Interleaved multiple interactions

3.1 Multiple interactions

Our basic framework for multiple interactions is the one
presented in [1], which in turn builds on the work in [2]. We
refer the reader to these for details, and here only provide
a very brief summary.

3.1.1 The basic formalism

The cross section for 2 → 2 QCD scatterings is dom-
inated by t-channel gluon exchange and hence diverges
roughly like dp2

⊥/p4
⊥. Therefore the integrated interaction

cross section above some p⊥min scale, σint(p⊥min), exceeds
the total inelastic nondiffractive cross section σnd when
p⊥min → 0. The resolution of this apparently paradoxical
situation probably comes in two steps.

Firstly, the interaction cross section is an inclusive
number. Thus, if an event contains two interactions
it counts twice in σint but only once in σnd, and so on for
higher multiplicities. Thereby we may identify 〈n〉(p⊥min)
= σint(p⊥min)/σnd with the average number of interac-
tions above p⊥min per inelastic nondiffractive event, and
that number may well be above unity.

As a starting point we will assume that all hadronic col-
lisions are equivalent, i.e. that there is no dependence on
impact parameter, and that the different parton–parton
interactions take place independently of each other, i.e.
we disregard energy–momentum conservation effects. The
number of interactions above p⊥min per event is then dis-
tributed according to a Poisson distribution with mean 〈n〉,
Pn = 〈n〉n exp(−〈n〉)/n!.

Secondly, the incoming hadrons are colour singlet ob-
jects. Therefore, when the p⊥ of an exchanged gluon is
made small and the transverse wavelength correspondingly
large, the gluon can no longer resolve the individual colour
charges, and the effective coupling is decreased. Note that
perturbative QCD calculations are always performed as-
suming free incoming and outgoing quark and gluon states,
rather than partons inside hadrons, and thus do not address
this kind of nonperturbative screening effects.

The simplest solution to the second issue is to introduce
a step function θ(p⊥ − p⊥min), such that the perturbative
cross section is assumed to completely vanish below some
p⊥min scale. Given the complexity of the nonperturbative

physics involved, p⊥min cannot be calculated but has to be
tuned to data. A more realistic alternative is to note that
the jet cross section is divergent like α2

s (p
2
⊥)/p4

⊥, and that
therefore a factor

α2
s (p

2
⊥0 + p2

⊥)
α2

s (p2
⊥)

p4
⊥

(p2
⊥0 + p2

⊥)2
(41)

would smoothly regularize the divergences, now with p⊥0
as the free parameter to be tuned to data. Later we will
return to the issue of whether to do a similar replacement
for the scale argument of parton densities.

In an event with several interactions, it is convenient to
order them in p⊥, as already discussed in the introduction.
The generation of a sequence

√
s/2 > p⊥1 > p⊥2 > . . . >

p⊥n > p⊥min now becomes one of determining p⊥ = p⊥i

from a known p⊥i−1, according to the probability distri-
bution

dP
dp⊥

=
1

σnd

dσ

dp⊥
exp

[
−
∫ p⊥i−1

p⊥

1
σnd

dσ

dp′
⊥

dp′
⊥

]
. (42)

The exponential expression is the ‘form factor’ from the
requirement that no interactions occur between p⊥i−1 and
p⊥i, cf. the Sudakov form factor of parton showers.

More realistically, one should include the possibility
that each collision also could be characterized by a varying
impact parameter b. Within the classical framework we use
here, b is to be thought of as a distance of closest approach,
not as the Fourier transform of the momentum transfer. A
small b value corresponds to a large overlap between the
two colliding hadrons, and hence an enhanced probability
for multiple interactions. A large b, on the other hand,
corresponds to a grazing collision, with a large probability
that no parton–parton interactions at all take place.

Let O(b) denote the time-integrated matter overlap
between the two incoming hadrons at impact parameter
b. The combined selection of b and a set of scattering p⊥i

values can be reduced to a combined choice of b and p⊥1,
according to a generalization of (42)

dP
dp⊥1 d2b

=
O(b)
〈O〉

1
σnd

dσ

dp⊥

× exp

[
−O(b)

〈O〉
∫ √

s/2

p⊥

1
σnd

dσ

dp′
⊥

dp′
⊥

]
. (43)

The subsequent interactions can be generated sequentially
in falling p⊥ as before, with the only difference that dσ/dp2

⊥
now is multiplied by O(b)/〈O〉, where b is fixed at the value
chosen above.

3.1.2 Correlated parton densities

Consider a hadron undergoing multiple interactions in a
collision. Such an object should be described by multi-
parton densities, giving the joint probability of simultane-
ously finding n partons with flavours f1, . . . , fn, carrying
momentum fractions x1, . . . , xn inside the hadron, when
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probed by interactions at scales Q2
1, . . . , Q

2
n, in our case

with the association Q2
i = p2

⊥i. Having nowhere near suffi-
cient experimental information to pin down such distribu-
tions, and wishing to make maximal use of the information
that we do have, namely the standard one-parton-inclusive
parton densities, we propose the following strategy.

The first and most trivial observation is that each inter-
action i removes a momentum fraction xi from the hadron
remnant. This momentum loss can be taken into account
by assuming a simple scaling ansatz for the parton distri-
butions, f(x) → f(x/X)/X, where X = 1−∑n

i=1 xi is the
momentum remaining in the beam hadron after the n first
interactions. Effectively, the PDF’s are simply ‘squeezed’
into the range x ∈ [0, X].

Next, for a given hadron, the valence distribution of
flavour f after n interactions, qfvn(x, Q2), should integrate
to the numberNfvn of valence quarks of flavour f remaining
in the hadron remnant. This rule may be enforced by scaling
the original distribution down, by the ratio of remaining
to original valence quarks Nfvn/Nfv0, in addition to the
x scaling mentioned above.

Also, when a sea quark is knocked out of a hadron, it
must leave behind a corresponding antisea parton in the
beam remnant. We call this a companion quark. In the
perturbative approximation the sea quark qs and its com-
panion qc come from a gluon branching g → qs + qc (it is
implicit that if qs is a quark, qc is its antiquark). Starting
from this perturbative ansatz, and neglecting other inter-
actions and any subsequent perturbative evolution of the
qc, we obtain the qc distribution from the probability that a
sea quark qs, carrying a momentum fraction xs, is produced
by the branching of a gluon with momentum fraction y, so
that the companion has a momentum fraction x = y − xs,

qc(x; xs) ∝
∫ 1

0
g(y) Pg→qsqc(z) δ(xs − zy) dz

=
g(xs + x)
xs + x

Pg→qsqc

(
xs

xs + x

)
, (44)

with Pg→qsqc the usual DGLAP gluon splitting kernel. A
simple ansatz g(x) ∝ (1−x)n/x is here used for the gluon.
Normalizations are fixed so that a sea quark has exactly
one companion.

Without any further change, the reduction of the va-
lence distributions and the introduction of companion dis-
tributions, in the manner described above, would result
in a violation of the total momentum sum rule, that the
x-weighted parton densities should integrate to X: by re-
moving a valence quark from the parton distributions we
also remove a total amount of momentum corresponding to
〈xfv〉, the average momentum fraction carried by a valence
quark of flavour f , and by adding a companion distribu-
tion we add an analogously defined momentum fraction.
To ensure that the momentum sum rule is still respected,
we assume that the sea and gluon normalizations fluctuate
up when a valence distribution is reduced and down when
a companion distribution is added, by a multiplicative fac-
tor. The requirement of a physical x range is of course still
maintained by ‘squeezing’ all distributions into the interval
x ∈ [0, X].

After the perturbative interactions have taken each
their fraction of longitudinal momentum, the remaining
momentum is to be shared between the beam remnant
partons. Here, valence quarks receive an x picked at ran-
dom according to a small-Q2 valence-like parton density,
while sea quarks must be companions of one of the initia-
tor quarks, and hence should have an x picked according
to the qc(x; xs) distribution introduced above. In the rare
case that no valence quarks remain and no sea quarks need
be added for flavour conservation, the beam remnant is
represented by a gluon, carrying all of the beam remnant
longitudinal momentum.

Further aspects of the model include the possible for-
mation of composite objects in the beam remnants (e.g.
diquarks) and the addition of non-zero primordial k⊥ values
to the parton shower initiators. Especially the latter intro-
duces some complications, to obtain consistent kinematics.
More complete descriptions may be found in [1, 35].

3.1.3 Colour correlations

The initial state of a baryon may be represented by three
valence quarks, connected antisymmetrically in colour via
a central junction, which acts as a switchyard for the colour
flow and carries the net baryon number.

The colour-space evolution of this state into the initia-
tor and remnant partons actually found in a given event
is not predicted by perturbation theory, but is crucial in
determining how the system hadronizes; in the Lund string
model [8], two colour-connectedfinal-state partons together
define a string piece, which hadronizes by successive non-
perturbative breakups along the string. Thus, the colour
flow of an event determines the topology of the hadronizing
strings, and consequently where and how many hadrons
will be produced.

The question can essentially be reduced to one of choos-
ing a fictitious sequence of gluon emissions off the initial
valence topology, since sea quarks together with their com-
panion partners are associated with parent gluons, by con-
struction.

The simplest solution is to assume that gluons are at-
tached to the initial quark lines in a random order. If so,
the junction of an incoming baryon would rarely be colour-
connected directly to two valence quarks in the beam rem-
nant, and the initial-state baryon number would be able
to migrate to large p⊥ and small xF values. While such
a mechanism should be present, there are reasons to be-
lieve that a purely random attachment exaggerates the
migration effects. Hence a free parameter is introduced
to suppress gluon attachments onto colour lines that lie
entirely within the remnant.

This still does not determine the order in which gluons
are attached to the colour line between a valence quark
and the junction. We consider a few different possibilities:
1) random, 2) gluons are ordered according to the rapidity
of the hard scattering subsystem they are associated with,
and 3) gluons are ordered so as to give rise to the smallest
possible total string lengths in the final state. The two latter
possibilities correspond to a tendency of nature to minimize
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the total potential energy of the system, i.e. the string
length. Empirically such a tendency among the strings
formed by multiple interactions is supported e.g. by the
observed rapid increase of 〈p⊥〉 with ncharged [36].

It appears, however, that a string minimization in the
initial state is not enough, and that also the colours in-
side the initial-state cascades and hard interactions may
be nontrivially correlated. Currently this is handled by a
reassignment among a fraction of the colours in the final
state, chosen so as to reduce the total string length.

3.2 Multiple interactions and initial-state radiation

Each multiple interaction is associated with its set of initial-
and final-state radiation. We have already argued that, to
a good approximation, the addition of FSR can be de-
ferred until after ISR and MI have been considered in full.
Specifically, FSR does not modify the total amount of en-
ergy carried by perturbatively defined partons, it only re-
distributes that energy among more partons. By contrast,
both the addition of a further ISR branching and the ad-
dition of a further interaction implies more perturbative
energy, taken from the limited beam-remnants reservoir.
These two mechanisms, therefore, are in direct competition
with each other.

We have advocated for p⊥ as a convenient ordering
variable, with smaller p⊥ values corresponding to ‘later
times’. The p⊥ measure used for MI fills a similar function
as the p⊥evol variable used for ISR, such that the two can
be viewed as measuring the same kind of ‘time ordering’.
To wit, kinematically p⊥evol agrees well with the standard
p⊥, except in the corner of high virtualities, where there
is little multiple activity anyway. An example of this map-
ping is shown in Fig. 5. Further, the generation of a new
interaction, (42) (or its extension to varying impact pa-
rameters), can be viewed as an evolution downwards in a
p⊥evol = p⊥, in a similar form-factor formalism as for the
backwards evolution of ISR.

Thereby the choice of p⊥ as shower ordering variable is
more economical than our previous use of virtuality, in the
sense that it eliminates the need for two matching param-
eters, Q2

max,shower = f p2
⊥,MI. These f values, typically in

the range 1 to 4, separate for spacelike and timelike show-
ers, were there to compensate on the average for the extra
z-dependent factors in the relations p2

⊥ ≈ (1 − z)Q2 and
p2

⊥ ≈ z(1 − z)Q2, respectively, so that the showers start
from a p⊥ scale comparable with that of the interaction.
In our new model this is automatic.

Starting from a hard interaction, a common sequence of
subsequent evolution steps – interactions and branchings
mixed – can therefore be found. Assuming that the latest
step occurred at some p⊥i−1 scale, this sets the maximum
p⊥max = p⊥i−1 for the continued evolution. What can
happen next is then either a new interaction or a new
ISR branching on one of the two incoming sides in one of
the existing interactions. The probability distribution for
p⊥ = p⊥i is given by

dP
dp⊥

=
(

dPMI

dp⊥
+
∑ dPISR

dp⊥

)
(45)
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Fig. 5. Parton p⊥ spectra when two-parton events of a fixed
p⊥ = 50 GeV, for an 1800 GeV pp collider, are modified by a
single ISR branching with p⊥evol = 50 GeV, using CTEQ5L
parton distributions and the standard DGLAP splitting ker-
nels. Owing to p⊥evol �= p⊥, the parton emitted at the ISR
branching has a tail to p⊥ values well below 50 GeV. However,
this spectrum is comparable with the lower-p⊥ of the two hard-
scattering partons, after the recoil from the ISR has been taken
into account, so there is a certain symmetry if it all is viewed
as a 2 → 3 process

× exp
(

−
∫ p⊥i−1

p⊥

(
dPMI

dp′
⊥

+
∑ dPISR

dp′
⊥

)
dp′

⊥

)

in simplified notation. Technically, the p⊥i can be found
by selecting a new trial interaction according to dPMI
× exp(− ∫ dPMI), and a trial ISR branching in each of the
possible places according to dPISR exp(− ∫ dPISR). The
one of all of these possibilities that occurs at the largest
p⊥ preempts the others, and is allowed to be realized. The
whole process is iterated, until a lower cutoff is reached,
below which no further interactions or branchings are al-
lowed.

If there were no momentum constraints linking the dif-
ferent subsystems, it would be easy to see that such an
interleaved evolution actually is equivalent to considering
the ISR of each interaction in full before moving on to the
next interaction. Competition is introduced via the cor-
related parton densities already discussed. Thus distribu-
tions are squeezed to be nonvanishing in a range x ∈ [0, X],
where X < 1 represents the fraction of the original beam
remnant momentum still available for an interaction or
branching. When a trial n’th interaction is considered,
X = 1−∑n−1

i=1 xi, where the sum runs over all the already
existing interactions. The xi are the respective momen-
tum fractions of the ISR shower initiators at the current
resolution scale, i.e., an xi is increased each time an ISR
branching is backwards-constructed on an incoming par-
ton leg. Similarly, the flavour content is modified to take
into account the partons already extracted by the n − 1
previous interactions, including the effects of ISR branch-
ings. When instead a trial shower branching is considered,
the X sum excludes the interaction under consideration,
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Table 1. The parameters distinguishing the new tunes, compared to Tune A and the “Rap”
model where meaningful. Also shown are the mean numbers of interactions, 〈nINT〉 (including
the hardest), ISR branchings, 〈nISR〉, and FSR branchings, 〈nFSR〉, for each model

Model ISR FSR p⊥0

Kind name cutoff scale [GeV] F ′ 〈nINT〉 〈nISR〉 〈nFSR〉
old Tune A sharp – 2.00 – 5.8 2.0 3.6
” Rap sharp – 2.40 (F = 0.55) 3.6 4.4 5.5
new Sharp ISR sharp radiator 2.70 1.9 1.8 3.9 15.9
” Low FSR smooth lowest 2.30 0.8 2.9 2.2 9.2
” High FSR smooth radiator 2.50 1.3 2.4 1.7 14.0

since this energy is at the disposal of the interaction, and
similarly for the flavour content.

We have already discussed the choice of p⊥max scale for
ISR showers, and that now generalizes. Thus, for minimum-
bias QCD events the full phase space is allowed, while the
p⊥ scale of a QCD hard process sets the maximum for the
continued evolution, in order not to doublecount. When
the hard process represents a possibility not present in the
MI/ISR machinery – production of Z0, top, or supersym-
metry, say – there is no risk of doublecounting, and again
the full (remaining) phase space is available.

There is also the matter of a lower p⊥min scale. Custom-
arily such scales are chosen separately for ISR and MI, and
typically lower for the former than the latter. Both cutoffs
are related to the resolution of the incoming hadronic wave
function, however, and in the current formalism ISR and MI
are interleaved, so it makes sense to use the same regular-
ization procedure. Therefore also the branching probability
is smoothly turned off at a p⊥0 scale, like for MI, by a factor
the square root of (41), since only one vertex is involved in
a shower branching relative to the two of a hard process.
Thus the αs(p2

⊥evol) dp2
⊥evol/p2

⊥evol divergence is tamed to
αs(p2

⊥0+p2
⊥evol) dp2

⊥evol/(p2
⊥0+p2

⊥evol). The scale of parton
densities in ISR and MI alike is maintained at p2

⊥evol, how-
ever, the argument being that the actual evolution of the
partonic content is given by standard DGLAP evolution,
and that it is only when this content is to be resolved that
a dampening is to be imposed. This also has the boon that
flavour thresholds appear where they are expected.

The cutoff for FSR is still kept separate and lower, since
that scale deals with the matching between perturbative
physics and the nonperturbative hadronization at long time
scales, and so has a somewhat different function.

4 Some first results

4.1 Simple tunes

In this section, some first tests of the new framework are
presented. We compare Tune A [37] of the old multiple
interactions scenario [2] and the “Rap” tune of [1] with three
rough ‘tunes’ of the new framework. These preliminary
new tunes all take the parameters of the “Rap” model as
a starting point:
• A matter overlap profile proportional to exp(−b1.8),

where b is the impact parameter.

• Rapidity-ordered initial-state colour connections.
• Shower initiator attachments between two partons both

in the beam remnant are suppressed by a factor 0.01
relative to others.

• Only valence quarks are allowed to participate in the
formation of diquarks in the beam remnants, and these
diquarks are then assumed to acquire total x values
twice as large as the naive sum of x values of their
constituents.

• As for Tune A, the regularization scale p⊥0 is given
at a reference cm energy of 1800 GeV, with an energy
rescaling proportional to E

1/4
cm .

These choices havebeenmade for convenience, to keepdown
the number of free parameters to be tuned. Very likely, an
improved agreement with data can be obtained by relaxing
this, e.g. by varying the matter overlap profile. We also
have indications that the energy dependence of p⊥0 may be
smaller than in Tune A but, since we only show comparisons
at 1.8–1.96 TeV, this will be of no importance here.

In addition, the three new tunes differ in the parame-
ters listed in Table 1, which also show the resulting average
numbers of interactions, and ISR and FSR branchings for
each model in a ‘minimum-bias’ sample of inelastic non-
diffractive events. One may view “High FSR” as our pre-
ferred new scenario, with “Sharp ISR” and “Low FSR”
representing two variations, as a check of the sensitivity to
some key assumptions.

The “Sharp ISR” model uses a threshold regularization
of the ISR evolution (at p⊥evol = 1 GeV), similarly to the
old models, rather than the smooth dampening, (the square
root of) (41), used in the other new tunes. (The multiple
interactions cross sections are regularized by (41) in all
cases.) In addition, both the “High FSR” and the “Sharp
ISR” tunes let the maximum scale for final-state emissions
off a given parton be determined by the p⊥evol of that
parton, while for the “Low FSR” tune the scale is given by
whichever has the lowest p⊥evol of the two partons spanning
the radiating dipole.

The parameter F ′ controls the strength of colour re-
connections in the final state. Essentially, this is a fudge
parameter, required in the new framework in order to ap-
proximately reproduce the effect of the rather extreme
parameter settings controlling the final-state colour corre-
lations between different scatterings in Tune A. We still
have not penetrated to the details of the underlying mech-
anism here, i.e. why data seem to prefer such an extreme
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behaviour, hence the appearance of effective parameters
controlling these correlations in both types of models. F ′
has a slightly different meaning than F of the “Rap” model,
as follows. In [1], the colour reconnections were performed
after all the perturbative activity had been generated, in-
cluding final-state radiation. In the new framework, the
colour reconnections are performed before the final-state
showers, since a priori we believe it is mostly a lack of cor-
relation in the initial-state colour flows that we are trying
to make up for by this procedure.

The tunes have been produced by adjusting p⊥0 and
F ′ so as to simultaneously describe the Tune A charged
multiplicity and 〈p⊥〉(nch) distributions as well as possible,
since these in turn give good fits to Tevatron data. Results
are shown in Figs. 6 and 7.

While the multiplicity distributions have been brought
into fair agreement with each other, the Tune A 〈p⊥〉(nch)
is very difficult to duplicate in the new framework. This
problem was also present for the models presented in [1].
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Fig. 8. a Number of multiple interactions (in addition to the
hardest one) and b the average number of additional interac-
tions as a function of the p⊥ of the hardest interaction, both
for 1.96 TeV pp minimum-bias events

Our interpretation is that this particular distribution is
highly sensitive to the colour correlations, and we have so
far been unsuccessful in identifying a physics mechanism
that could explain the rather extreme correlations that are
present in Tune A. Since data seems to be in fair agree-
ment with Tune A here, the bottom line is that some kind
of more or less soft colour correlations working between
the scattering chains is likely to be present, beyond what
our primitive fudge parameters F and F ′ are capable of
describing at this point.

4.2 Event activity

We now take a closer look at the relative proportions of
the MI, ISR, and FSR make-up of minimum-bias events,
for the models in Table 1. Firstly, the number of multiple
interactions (excluding the hardest) is shown in Fig. 8a,
and the dependence of the average number of extra in-
teractions on the p⊥ of the hardest interaction in Fig. 8b.
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Fig. 9. z distributions for the first ISR branching, z1, in 1.96 TeV
pp minimum-bias events

The relatively low p⊥0 and slightly more peaked matter
distribution of Tune A gives a tail towards very large mul-
tiplicities which is substantially reduced both in the new
models and in the Rap tune. Surprisingly, the Low FSR
scenario lies somewhat below the Rap model, even though
the latter has a higher p⊥0 scale. A sanity check is to switch
off ISR and then compare the four models with the same
matter overlap. Without the ISR evolution competing for
phase space, the nMI distribution then looks as would be
expected, with the lower p⊥0 scenario exhibiting the broad-
est distribution. Thus, the ISR branchings ‘eat up’ phase
space more quickly in the new framework than before, leav-
ing less room for multiple interactions. This conclusion is
verified in Fig. 9, which compares the distribution of z val-
ues for the first, i.e. hardest, ISR branching in an event.
The soft-gluon enhancement of ISR near z = 1 in the old
models is absent in the new ones! This comes from the use
of an evolution variable p2

⊥evol = (1 − z)Q2 in the latter
ones, which favours larger 1 − z in a branching than an
evolution in Q2, cf. the zmax expression in (30).

In analogy with Fig. 8, the multiplicities of ISR and
FSR branchings are depicted in Figs. 10 and 11, respec-
tively. For ISR as well as for FSR, Tune A has by far the
narrowest distributions, since only the hardest interactions
are associated with parton showers. Concentrating on the
ISR distribution, Fig. 10, again the Rap model exhibits
a very broad distribution, together with the Sharp ISR
model. This behaviour is characteristic of the threshold
regularization of the ISR cascade employed in these mod-
els, which gives a larger number of fairly soft emissions than
the smoothly regularized models, Low and High FSR. Also
note that the smaller number of branchings in these mod-
els partly is compensated by the larger 〈1 − z〉 for the
branchings that do occur.

The large number of FSR branchings, Fig. 11, is related
to the use of a very small cutoff here, of the order of p⊥min =
0.5 GeV, and so it cannot be compared directly with the
MI and ISR multiplicities. The new models clearly have
much broader FSR distributions than both Tune A and
the Rap model. As one would expect from the choice of
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Fig. 10. a Number of ISR branchings and b the average num-
ber of ISR branchings as a function of the p⊥ of the hardest
interaction, both for 1.96 TeV pp minimum-bias events

maximum scale of emission, the Low FSR model is the
narrowest of the new models. We also recall that there is
a built-in compensation mechanism: if the number of ISR
branchings is reduced then, other things being the same,
this results in fewer but larger dipoles that therefore can
radiate more. Although the old and new shower algorithms
do not allow a straightforward comparison, the difference
between Rap and the new models is at least consistent with
such a partial compensation.

Returning now to observable distributions, the fact that
less p⊥ is kicked into events with large multiplicities in the
new frameworks, cf. Fig. 7, while the multiplicity distribu-
tions are similar, also implies that there should be fewer
events with large total E⊥ than in Tune A. This is corrob-
orated by Fig. 12, which shows the scalar sum of hadron p⊥
values in 1.9 TeV pp minimum-bias events. Both the new
models and the Rap model have noticeably fewer events
in the region above ∼ 100 GeV than does Tune A.

In addition, Fig. 13 shows that the pseudorapidity dis-
tribution has become narrower, i.e. the particle production
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Fig. 11. a Number of FSR branchings and b the average
number of FSR branchings as a function of the p⊥ of the
hardest interaction, both for 1.96 TeV pp minimum-bias events

has become more central. The normalization differences are
in this context not very interesting, arising from small dif-
ferences in the average charged multiplicity of the tunes.

However, these difference do not have a large impact
on most other observables. Thus e.g. the minijet rates and
charged hadron p⊥ distributions in Figs. 14 and 15 are
hardly distinguishable between Tune A and the new mod-
els. The minijet E⊥ spectrum, defined by a simple cone al-
gorithm with a cone radius of R =

√
(∆η)2 + (∆φ)2 = 0.7

and an E⊥min = 5 GeV, which was slightly softer in the
Rap model than in Tune A, has become slightly harder. On
the other hand, the charged hadron p⊥ spectrum, which
was slightly harder in the Rap model than in Tune A, has
dropped back down fairly close to the Tune A level.

4.3 Jet events and profiles

Complementary to the above are studies of events with hard
jets and their properties. As an example of this, we have
considered 1.96 TeV pp events where the hardest 2 → 2
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Fig. 16. Charged multiplicity distribution for 1.96 TeV pp
events with p⊥hard > 100 GeV

interaction has a p⊥hard > 100 GeV, without any further
requirements. The charged multiplicity distribution of such
events is shown in Fig. 16, and their pseudorapidity distri-
bution in Fig. 17. Given that the models have been tuned
to each other exclusively for a minimum-bias event sample,
the differences are less than could have been expected. We
note a clear difference at mid-rapidities; however, where
Tune A shows more activity than any of the newer scenar-
ios, cf. also Fig. 13. This is likely to be related to the way
strings are connected from the central interactions to the
beam remnants.

The jet multiplicity in these events, obtained by a com-
bination of MI, ISR and FSR activity, is shown in Fig. 18.
The Low FSR scenario stands out by having significantly
less jet activity than any of the other ones, clearly indicat-
ing the impact of the reduced FSR in these events. The
other rates come surprisingly close, given that both the
ISR and the FSR algorithms are quite different between
the old and the new scenarios. At high jet multiplicities
the new ones are somewhat above the older ones.
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Fig. 17. Pseudorapidity distribution for 1.96 TeV pp events
with p⊥hard > 100 GeV

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  2  4  6  8  10

P
ro

ba
bi

lit
y

njet

Tune A
Rap

Sharp ISR
Low FSR
High FSR

Fig. 18. Jet multiplicity distribution for 1.96 TeV pp events
with p⊥hard > 100 GeV, using a cone clustering algorithm with
R = 0.7 and E⊥min = 10 GeV

Next we study the properties of the jets produced. Since
the two hardest jets both arise already as a consequence
of the hard interaction, they have similar properties, while
further jets are related to the additional activity and thus
internally similar. Therefore only results for the hardest
and (when present) third hardest jet are shown here. The
respective jet E⊥ spectra are shown in Fig. 19. The hardest
jet is harder in all the three new scenarios than in the two
old ones, while the third and subsequent ones are more
similar. Again, given the changed ISR and FSR algorithms,
the similarities for the third jet are more surprising than
the differences for the first. Notably, the lower jet activity
in the Low FSR scenario is not reflected in a reduced tail
out to high-E⊥ third jets.

The energy flow inside a jet can be plotted as a function
of the distance r away from the center of the jet, or better
as a function of r/R. Such profiles are shown for the hardest
and third jet in Fig. 20. For the hardest jet, again Low FSR
stands out by producing narrower jets, while for the third
Rap is even more narrow. Generally, the differences are
small, however.
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Fig. 21. The a charged multiplicity distribution and b charged
particle profile of the hardest jet in 1.96 TeV pp events with
p⊥hard > 100 GeV

Turning to chargedmultiplicity distributions inside jets,
the Rap scenario tends to have the least, and the High FSR
and Sharp ISR the most. This is illustrated in Fig. 21a for
the hardest jet, but the same pattern repeats also for the
softer one. Comparing with the total charged multiplicity
of these events, Fig. 16 above, which does not show the
same pattern,we conclude that the balance between activ-
ity inside and outside the identified jets differs, possibly
reflecting the amount of softer jet activity.

By contrast, the charged particle number jet profile
follows the same pattern as observed above for the E⊥
profile. That is, Low FSR gives the most narrow hardest
jet, Fig. 21b, while Rap gives the most narrow third jet,
not shown.

In summary, differences are smaller than might have
been guessed, considering the changes especially in the
ISR and FSR algorithms. Specifically, with the new algo-
rithms the upper scale p⊥max for ISR and FSR evolution is
unambiguously set by the p⊥hard of the hard interaction,
while the older ones did involve an ambiguous choice of
a Q2

max = 4p2
⊥hard, intended roughly to give p⊥ ordering,

but not in the guaranteed sense of the new algorithms.

4.4 Z0 production

A slightly different test is to study the p⊥ spectrum of high-
mass dileptons coming from the decay of a γ∗/Z0. We can
here compare with the CDF p⊥Z spectrum at 1.8 TeV [38],
normalizing the curves to the experimental integrated cross
section, Fig. 22.

Since the high-p⊥Z behaviour is constrained by our
use of first-order matrix-element corrections [33], it is not
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with CDF corrected data at 1.8 TeV [38]
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surprising that differences here are small. That the three
new scenarios are above the two older ones presumably is a
consequence of the different treatment of FSR, which does
not at all influence p⊥Z in the new models, while the p⊥
of an ISR branching is reduced by FSR in the older ones.
This is a degree of freedom that could be studied further
when FSR is interleaved with MI and ISR. By contrast, the
competition between MI and ISR does not seem to play
any significant role, if we compare the current spectra with
the earlier results for the new ISR algorithm without any
MI [34]. This is to be expected, since most of the p⊥Z is
generated at p⊥ scales where the MI rate is still small.

More interesting is the improvement in the low-p⊥ re-
gion with the new ISR algorithm, similarly to what has
been found earlier [34]. However, note that we in all cases
make use of a Gaussian primordial k⊥ with a 2 GeV width
(thus deviating from the pure Tune A, where it is kept at
the Pythia default of 1 GeV). The implementation of this
k⊥ is more complex with the new beam-remnant imple-
mentation of [1], and e.g. could depend on the number of
multiple interactions, but actually the distributions turn
out to be quite similar. The problem, therefore, remains
that this primordial k⊥ is larger than can physically be
well motivated based on purely nonperturbative physics.
We observe that, among the new models, the Sharp ISR
could have been combined with a smaller primordial k⊥
since its peak is shifted towards too large p⊥Z, while the
High FSR and Low FSR (which here only differ by their
p⊥0 values) could have used an even larger primordial k⊥.
In part, this makes sense: with ISR being turned off at
larger p⊥ values in the latter models, it is then also easier
to motivate a larger primordial k⊥.

The complete comparison of algorithms is rather com-
plicated, however. The primordial k⊥ that reaches the hard
interaction is diluted by the ISR activity, and so scales down
like the ratio of the x value of the incoming parton at the
hard interaction to that of the initiator, ztot = xin/xinit.
This ratio is approximately the same for the old ISR shower
(〈ztot〉 ≈ 0.59) and Sharp ISR (〈ztot〉 ≈ 0.62), indicating
that the fewer ISR branchings and smaller z per branching
in the new algorithm rather well cancel. The smooth turnoff
of High and Low FSR gives less branchings (〈ztot〉 ≈ 0.75)
and thus more primordial k⊥ survives in these scenarios.

In summary, the new MI+ISR scheme gives an im-
proved description of Z0 production, but this improvement
is mainly due to the changes in the ISR algorithm, not to
the competition with MI. That is, in this case and others
involving a very hard interaction, the testing of ISR and
of MI largely factorizes. Unfortunately our changes there-
fore do not remove the need for an uncomfortably large
primordial k⊥.

5 Outlook

In this article we have considered the consequences of in-
terleaved multiple interactions and initial-state radiation,
and paved the way for interleaving also final-state radia-
tion in this framework, but that does not exhaust the list
of perturbative processes in ‘normal’ hadronic events. One

further possibility is that a parton from one of the incom-
ing hadrons scatters twice, against two different partons
from the other hadron, rescattering or ‘3 → 3’. Another
possibility is that two partons participating in two separate
hard scatterings may turn out to have a common ancestor
when the backwards evolution traces the prehistory to the
hard interactions, joined interactions (JI).

The 3 → 3 processes have been considered in the lit-
erature [39], with the conclusion that they should be less
important than multiple 2 → 2 processes, except possibly
at large p⊥ values, where QCD radiation anyway is ex-
pected to be the dominant source of multijet events. The
reason is that one 3 → 3 scattering and two 2 → 2 ones have
similar parton-level cross sections, but the latter wins by
involving one parton density more. Nevertheless, at some
point, there ought to be a more detailed modelling, in order
better to quantify effects.

The joined interactions are well-known in the context
of the evolution of multiparton densities [40], but have not
been applied to a multiple interactions framework. We will
therefore here carry out a first study, to quantify roughly
how common JI are and how much activity they contribute
with. A full implementation of the complete kinematics,
intertwining MI, ISR and JI all possible ways, is a major
undertaking, worth the effort only if the expected effects
are non-negligible. Given the many uncertainties in all the
other processes at play, one would otherwise expect that
the general tuning of MI/ISR/FSR/. . . to data would hide
the effects of JI, as well as of 3 → 3 processes.

5.1 Joined interactions: theory

Just like the starting point for a discussion of ISR is the
DGLAP evolution equations for the single-parton densi-
ties, the starting point for JI is the evolution equations for
the two-parton densities. Relevant forwards-evolution for-
mulae are available in the literature in integrated form [40].
Here, however, we will choose a differential form, that can
then be applied to our backwards evolution framework.
To this end, define the two-parton density f

(2)
bc (xb, xc, Q

2)
as the probability to have a parton b at energy fraction
xb and a parton c at energy fraction xc when the proton
is probed at a scale Q2. The evolution equation for this
distribution is

df
(2)
bc (xb, xc, Q

2) =
dQ2

Q2

αs

2π

∫∫
dxa dz

×
{

f (2)
ac (xa, xc, Q

2) Pa→bd(z) δ(xb − zxa)

+ f
(2)
ba

(
xb, xa, Q2) Pa→cd(z) δ(xc − zxa) (46)

+ fa(xa, Q2) Pa→bc(z) δ(xb − zxa) δ(xc − (1 − z)xa)
}

.

As usual, we assume implicit summation over the allowed
flavour combinations; thus the last term is absent when
there is no suitable mother a for a given set of b and c.
An illustration of the three terms is given in Fig. 23. The
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Fig. 23. Illustration of the three terms in the two-parton den-
sity evolution, (46)

first two are the standard ones, where b and c evolve in-
dependently, up to flavour and momentum conservation
constraints, and are already taken into account in the ISR
framework. It is the last term that describes the new pos-
sibility of two evolution chains having a common ancestry.

Carrying out the δ integrations, which imply that xa =
xb + xc and z = xb/(xb + xc), the probability for the
unresolution of b and c into a when Q2 is decreased (cf.
the step from (6) to (7)) can be rewritten as

dPbc(xb, xc, Q
2) =

∣∣∣∣∣ df
(2)
bc (xb, xc, Q

2)

f
(2)
bc (xb, xc, Q2)

∣∣∣∣∣
=
∣∣∣∣ dQ2

Q2

∣∣∣∣ αs

2π

fa(xa, Q2)

f
(2)
bc (xb, xc, Q2)

1
xb + xc

×Pa→bc(z)

=
∣∣∣∣ dQ2

Q2

∣∣∣∣ αs

2π

xafa(xa, Q2)

xbxcf
(2)
bc (xb, xc, Q2)

×z(1 − z)Pa→bc(z)

�
∣∣∣∣ dQ2

Q2

∣∣∣∣ αs

2π

xafa(xa, Q2)
xbfb(xb, Q2) xcfc(xc, Q2)

×z(1 − z)Pa→bc(z) . (47)

In the last step we have introduced the approximation
f

(2)
bc (xb, xc, Q

2) � fb(xb, Q
2) fc(xc, Q

2) to put the equation
in terms of more familiar quantities. Just like for the other
processes considered, a form factor is given by integration
over the relevant Q2 range and exponentiation.

The strategy now is clear. Previously we have intro-
duced a scheme wherein events are evolved downwards in
p⊥. At each step a new trial multiple interaction competes
against trial ISR branchings on the existing interactions,
and the one with largest p⊥ ‘wins’. Now a third option is
added, competing with the first two in the same way, i.e.
(45) is extended to

dP
dp⊥

=
(

dPMI

dp⊥
+
∑ dPISR

dp⊥
+
∑ dPJI

dp⊥

)
(48)

× exp
(
−
∫ p⊥i−1

p⊥

(
dPMI

dp′
⊥

+
∑ dPISR

dp′
⊥

+
∑ dPJI

dp′
⊥

)
dp′

⊥

)
.

The JI sum runs over all pairs of initiator partons with
allowable flavour combinations, separately for the two in-
coming hadrons. A gluon line can always be joined with

��

��

��

��

���

��

�
�

�

�
�

�

��

��

���

Fig. 24. Kinematics of the b + d and c + e colliding systems
a before and b after the a → b + c branching is reconstructed

a quark or another gluon one, and a sea quark and its
companion can be joined into a gluon. For each of these
possibilities, dPJI exp(− ∫ dPJI) can be used to do a back-
wards evolution from the p⊥max = p⊥i−1 scale given by
the previous step. If such a trial joining occurs at a larger
p⊥ scale than any of the other trial possibilities, then it
is allowed to occur. Also the regularization procedure at
small p⊥ values is the same as for MI and ISR.

The parton densities we will use are defined in the same
spirit as previously discussed, e.g. fb(xb, p

2
⊥) and fc(xc, p

2
⊥)

are squeezed into rangesx ∈ [0, X], whereX is reduced from
unity by the momentum carried away by all but the own
interaction, and for fa(xa, p2

⊥) by all but the b and c inter-
actions. Note that companion distributions are normalized
to unity. Therefore, for heavy quarks, the branching prob-
ability g → QQ goes like 1/ ln(p2

⊥/m2
Q) for p2

⊥ → m2
Q, as it

should, rather than like 1/ ln2(p2
⊥/m2

Q), which would have
been obtained if fQ and fQ independently were assumed
to vanish in this limit.

Unfortunately the kinematics reconstruction offers a
complication. Consider a system with recoilers d and e to
b and c, respectively, as depicted in Fig. 24. Use a prime
to denote the modified b and c four-momenta after the
a → b + c branching has been constructed, while d and e
should be unchanged. From xa = xb + xc it then follows
that pa = pb + pc = p′

b + p′
c, and from the z definition that

(p′
b + pd)2 = (pb + pd)2 = z(pa + pd)2 , (49)

(p′
c + pe)2 = (pc + pe)2 = (1 − z)(pa + pe)2 . (50)

Further, p′
b and p′

c should have opposite and compensat-
ing transverse momenta given by the p⊥ scale above, and
spacelike virtualities to be determined. Now, it turns out
that these requirements overconstrain the system. The ba-
sic problem is illustrated by (27): the spacelike parton needs
to pick up a larger p‖ component than its z share, in order
to retain the invariant mass with the recoiler when the
p⊥ is introduced. So, if both daughters should be space-
like, not both of them can pick up more p‖ than E, given
that a is massless. (A solution where one of p′

b and p′
c is

timelike sometimes exists, but not always, and is anyway
rather contrived.)
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We see two alternative ways out of this dilemma.
• Retain the xa = xb + xc expression, at the expense of

not giving any p⊥ or virtualities in the branching, i.e.
p′

b = pb and p′
c = pc. Then p⊥ only plays the role of a

formal evolution parameter, denoting the scale above
which b and c may radiate and interact separately.

• Insist on having a p⊥ kick in the branching. Then a
sensible (but not unique) choice is to put p′

b
2 = p′

c
2 =

−p2
⊥, such that both have m⊥ = 0 and thus p‖ = E.

These energies must now be scaled up somewhat, to
E′

b = (1 + p2
⊥/m2

bd)Eb and E′
c = (1 + p2

⊥/m2
ce)Ec, for

the invariant masses with the recoiler to be preserved,
and therefore

xa =
(

1 +
p2

⊥
m2

bd

)
xb +

(
1 +

p2
⊥

m2
ce

)
xc . (51)

It is then this xa that should be used in parton densities,
to ensure that the probability of a joining is suppressed
near the kinematical limit.

Given that no joinings are possible until after (at least)
two interactions have been generated, and that the rate
increases roughly quadratically with the number of inter-
actions, this physics mechanism becomes more important
at smaller p⊥ values. Therefore we do not expect the above
two extremes to differ that significantly for practical ap-
plications.

5.2 Joined interactions: results

Although an algorithm implementing the full kinematics for
joined interactions has not yet been constructed, it is still
possible to gauge the order of magnitude of the effects such
joinings could have. We do this by formally performing the
backwards evolution according to (48), i.e. including the
joining term (47) in competition with the ordinary ISR and
MI terms, without actually letting the generated joinings
occur physically. Thereby we still obtain an estimate for
how often and at which p⊥ values joinings would occur.

Since we do not perform the joinings physically, the
backwards evolution could in principle attempt joinings
involving the same initial state shower chain more than
once. Such joinings are of course rejected; only the first
joining involving a particular chain is kept track of.

Taking the High FSR model in Table 1 as a fair repre-
sentative of the evolution in the new framework, we show
the number distributions of multiple interactions exclud-
ing the first (MI), ISR branchings, FSR branchings, and
trial joinings (JI) in 1.96 TeV pp minimum-bias events,
Fig. 25a, and for events where the p⊥ of the hard inter-
action is above 100 GeV, Fig. 25b. Below, we refer to the
former as the “min-bias” sample and to the latter as the
“UE” (underlying event) sample. FSR is shown mainly
for reference here, the important graphs being the ones
illustrating the evolution in the initial state: MI, ISR, and
JI. One clearly observes that joinings are much less fre-
quent than the other types of evolution steps, averaging at
roughly one joining per 15 events for the min-bias sample
and one per 7 events for the UE sample. Thus, even when

a)
10

-4

10
-3

10
-2

10
-1

1

0 10 20
n

P
(n

)

Tevatron Run II: min-bias

MI
ISR
FSR
JI

b)
10

-4

10
-3

10
-2

10
-1

1

0 10 20
n

P
(n

)

Tevatron Run II: underlying event

MI
ISR
FSR
JI

Fig. 25. Probability distributions of MI, ISR, FSR, and JI in
a min-bias events and b events with p⊥hard > 100 GeV, for
1.96 TeV pp events. Note that the MI distribution does not
include the hardest scattering

relatively hard physics is involved, shower joinings do not
appear to take a very prominent role in the evolution.

To complement the number distributions, Fig. 26 shows
where the evolution steps occur in p⊥evol. As expected,
the joinings occur at comparatively low values of p⊥evol.
Also notice that both the ISR, MI, and JI distributions
exhibit a turnover around p⊥0, characteristic of the smooth
regularization used in the High FSR model.

Finally, Fig. 27 shows the total p⊥ sum of MI, ISR, FSR,
and JI activity, respectively. That is, for each interaction,
branching, or joining, a scalar p⊥ is defined, which is added
to a cumulative sum. For MI and JI this p⊥ is defined with
respect to the beam axis, while the ISR and FSR p⊥ is
defined with respect to the branching parton, which for ISR
is roughly along the beam direction, but for FSR normally
not. Therefore FSR mainly broadens jets, i.e. redistributes
the existing E⊥, whereas the other mechanisms increase
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Fig. 26. p⊥evol distributions showing the scale at which mul-
tiple interactions (MI), ISR branchings, FSR branchings, and
joined interactions (JI) occur, in 1.96 TeV pp min-bias events.
a Minimum-bias events, with the p⊥ scale of the hardest
interaction shown for reference (solid line). b events with
p⊥hard > 100 GeV. Note that the p⊥ axis goes out to 20 GeV
in a and to 50 GeV in b

the total E⊥ of the event. Again, the cumulative effect
of joinings is small, with only about 1% of the min-bias
sample and 5% of the UE one exhibiting more than 2 GeV
of total p⊥ from joinings.

6 Conclusions

It would seem natural to consider the evolution of a high-
energy event in the normal time order. In such a framework,
the incoming hadrons are evolved from a simple partonic
configuration at a low Q0 scale, up through a number of
short-lived fluctuations at different virtuality scales. At the
moment of collision, the two sets of partons may undergo
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Fig. 27.
∑

p⊥ distributions for MI, ISR, FSR and JI, in
1.96 TeV pp a minimum-bias events and b events with p⊥hard >
100 GeV. Note that the MI distribution does not include the
hardest scattering

several independent interactions.The scatteredpartons can
radiate in the final state, while fluctuations inside which
no scatterings occurred may recombine. Finally the set of
outgoing low-virtuality partons hadronize.

Such an approach has the advantage that it inherently
provides multiparton distributions, and thereby automati-
cally contains correlations between interactions, including
what is here called joined interactions. It does not remove
the need to consider possible scatterings in some order of
hardness, however: the partons of a high-virtuality fluctu-
ation may either interact individually or collectively, the
latter as the unresolved mother parton at a lower resolution
scale, and the former should preempt the latter.

There is also the well-known problem that it is difficult
to generate rare processes, since there is no straightforward
way to preselect the forwards evolution to give the desired
configuration. The nightmare example is the production
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of a narrow Higgs state, where the incoming partons must
match very precisely in invariant mass for a reaction to be
possible. More generally, efficiency suffers from the need to
consider a wealth of virtual fluctuations that in the end lead
to nothing. The assignment of individual virtualities and
transverse momenta to partons in such fluctuations is also
not unique, and does affect the kinematics reconstruction.
And, of course, the whole plethora of coherence effects
needs to be considered.

The alternative is to start with the hardest interaction,
and then ‘work outwards’ to longer timescales both in the
past and future, i.e. to (re)construct less hard steps in
the evolution of the event. This makes the preselection of
desired events straightforward, and in general implies that
the most striking aspects of the event are considered ‘up
front’. The price is a tougher task of reconstructing the
soft associated activity in the initial state, while final-state
radiation andhadronization offer about the same challenges
in the two scenarios.

In a set of articles we have begun the task of providing an
improved description of events along this latter philosophy.
The first step [3] was to develop a model for the hadroniza-
tion of junction topologies, thereby allowing complicated
beam remnants. The second step [1] was to develop a frame-
work for correlated parton densities, in flavour, colour and
transverse and longitudinal momentum, thereby allowing
initial-state radiation to be considered in full. In this, the
third step, we have interleaved multiple interactions and
initial-state radiation in a common transverse-momentum-
ordered sequence, with a common dampening procedure at
low transverse momenta to handle destructive interference
in this region. Our lack of explicitly implemented joined
interactions has been shown not to be a major shortcom-
ing, since such joinings are reasonably rare. That is, taken
together, we now have a framework that should provide a
complete description of all aspects that could have been cov-
ered by a forwards-in-time evolution scenario, along with
the traditional advantages of the backwards-evolution ap-
proach. In addition, the new framework makes use of new
algorithms for p⊥-ordered evolution in initial- and final-
state radiation, which should further improve the quality
of the description.

It may then be somewhat disappointing that we here
have used Pythia Tune A [37] as a reference, well knowing
that Tune A is able to describe a host of jet and minimum-
bias data at the Tevatron, in spite of it being based on a
much more primitive approach [2]. The hope, of course,
is that our new approach will be able to explain – and
predict – much more data than Tune A can. For sure we
know of many aspects of the old framework that are un-
reasonable, but that either have not been probed or that
may have been fixed up by a contrived choice of tuned
parameters. Ultimately this is for experimentalists to tell,
as tests become increasingly more sophisticated. Certainly,
one should not expect the advantages of the new model
to become apparent unless a similar effort is mounted as
went into producing Tune A in the first place.

There are also a few issues still hanging over us, await-
ing a ‘fourth step’. One is the implementation of joined
interactions and 3 → 3 rescattering processes, to see what

their real impact is, whether negligible or not. But the main
one we believe to be the interleaving of final-state radiation
with multiple interactions and initial-state radiation. On
the one hand, such an interleaving may not be required,
since the competition between FSR and MI+ISR is less
direct than that between MI and ISR: an FSR emission at
a high p⊥ scale does not affect the probability for MI or
ISR activity at lower p⊥ values. On the other hand, there
would then also not seem to be any disadvantage to having
a commonly ordered p⊥ sequence of MI+ISR+FSR, and
such an ordering would come in handy for a consistent
interfacing to higher-order matrix elements. Furthermore,
a p⊥-ordered FSR algorithm is available, well matched to
the p⊥-ordering of MI and ISR.

There is, however, one major open question related to
FSR interleaving: Which parton takes the momentum re-
coil when a FSR branching pushes a parton off the mass
shell? The problem is not so much the momentum trans-
fer itself, but that the size of the radiating dipole sets the
maximum scale for allowed emissions. We have in this ar-
ticle illustrated how such a choice can affect e.g. the jet
multiplicity and jet profiles.

The crucial distribution is the 〈p⊥〉(nch) one, however.
In order to provide a reasonable description of the exper-
imental data, we are forced to arrange colours in the final
state to have a smaller string length than colour correla-
tions in the initial state alone would suggest. This problem
has ‘always’ been there [2], and is accentuated in Tune A,
where as much as 90% of the partons added by multiple
interactions are connected so as to minimize the string
length. The hope that an improved treatment of other as-
pects would remove the need for a special string-length
minimization mechanism has so far failed to materialize.
We therefore need to understand better how the colour flow
is set, and how this influences the evolution of an event,
especially the FSR activity.

The related fields of minimum bias physics and un-
derlying events thus are further explored but not solved
with this article, and likely not with the next one either.
This should come as no surprise: in the world of hadronic
physics, there are few simple answers. Everything that is
not explicitly forbidden is bound to happen, and often at
a significant rate. To reflect reality, the theoretical pic-
ture therefore has to become more and more complex, as
one consideration after the next is pulled into the game.
However, if the journey is interesting and educational, why
despair that the end station is not yet reached?
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16. L. Lönnblad, Comput. Phys. Commun. 71, 15 (1992)
17. A.H. Mueller, Phys. Lett. 104B, 161 (1981); B.I. Ermolaev,

V.S. Fadin, JETP Lett. 33, 269 (1981)
18. M.H. Seymour, Comput. Phys. Commun. 90, 95 (1995)
19. G. Gustafson, private communication
20. S. Catani, F. Krauss, R. Kuhn, B.R. Webber, JHEP 11,
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